Can Machine Translation be a Reasonable Alternative for Multilingual Question Answering Systems over Knowledge Graphs?

Aleksandr Perevalov, Andreas Both, Dennis Diefenbach, Axel-Cyrille Ngonga Ngomo
2022 Proceedings of the ACM Web Conference 2022  
Providing access to information is the main and most important purpose of the Web. However, despite available easy-to-use tools (e.g., search engines, chatbots, question answering) the accessibility is typically limited by the capability of using the English language. This excludes a huge amount of people. In this work, we discuss Knowledge Graph Question Answering (KGQA) systems that aim at providing natural language access to data stored in Knowledge Graphs (KG). While several KGQA systems
more » ... e been proposed, only very few have dealt with a language other than English. In this work, we follow our research agenda of enabling speakers of any language to access the knowledge stored in KGs. Because of the lack of native support for many languages, we use machine translation (MT) tools to evaluate KGQA systems regarding questions in languages that are unsupported by a KGQA system. In total, our evaluation is based on 8 different languages (including some that never were evaluated before). For the intensive evaluation, we extend the QALD-9 dataset for KGQA with Wikidata queries and high-quality translations. The extension was done in a crowdsourcing manner by native speakers of the different languages. By using multiple KGQA systems for the evaluation, we were enabled to investigate and answer the main research question: "Can MT be an alternative for multilingual KGQA systems?". The evaluation results demonstrated that the monolingual KGQA systems can be effectively ported to the new languages with MT tools.
doi:10.1145/3485447.3511940 fatcat:o4uae3zfnzhd7hmochxwanih3a