Data Mining Algoritma Nearest Neighbor Untuk Memprediksi Tingkat Resiko Pinjaman DATA MINING ALGORITMA NEAREST NEIGHBOR UNTUK MEMPREDIKSI TINGKAT RESIKO PINJAMAN DANA DI BANK PERKREDITAN RAKYAT

Dana Di Bank, Perkreditan Rakyat, Eka Praja, Wiyata Mandala
2016 Jurnal Ilmu Komputer   unpublished
Risks of borrowing funds typically experiencing are parties who provide loans to the publisher. If the lender is a bank, the bank will suffer losses. Currently, many customers who make loans in the bank, not least in the BPR. BPR is a financial institution that accepts deposits only in the form of time deposits, savings deposits, and / or other equivalent form and distribute funds in an effort BPR. To assist the BPR, is necessary to find a solution to determine the level of risk loans made by
more » ... stomers that the bank did not suffer losses. In this study, proposed an algorithm in data mining is Nearest Neighbor. Nearest Neighbor is the approach to look for cases by calculating the affinity between new cases with old cases, which is based on matching the weight of a number of existing features. Results from this study is an application that can assist in determining the level of risk of lending funds. Taking into account several factors such as loan amount, loan purpose, duration, conditions of the debtor, the debtor's income and collateral. Abstrak Resiko peminjaman dana biasanya yang mengalami adalah pihak-pihak yang memberikan pinjaman kepada pihak penerbit. Bila pemberi pinjaman adalah bank, bank tersebut akan menderita kerugian. Saat ini banyak sekali nasabah yang melakukan pinjaman dana di bank, tidak terkecuali di Bank Perkreditan Rakyat. Bank Perkreditan Rakyat adalah lembaga keuangan bank yang menerima simpanan hanya dalam bentuk deposito berjangka, tabungan, dan/atau bentuk lainnya yang dipersamakan dan menyalurkan dana sebagai usaha BPR. Untuk membantu pihak Bank Perkreditan Rakyat, perlu dicari solusi untuk menentukan tingkat resiko pinjaman dana yang dilakukan oleh nasabah agar bank tidak mengalami kerugian. Pada penelitian ini, diusulkan sebuah algoritma dalam data mining yaitu Nearest Neighbor. Nearest Neighbor adalah pendekatan untuk mencari kasus dengan menghitung kedekatan antara kasus baru dengan kasus lama, yaitu berdasarkan pada pencocokan bobot dari sejumlah fitur yang ada. Hasil dari penelitian ini adalah sebuah aplikasi yang dapat membantu dalam menentukan tingkat resiko pinjaman dana. Dengan mempertimbangkan beberapa faktor diantaranya adalah jumlah pinjaman, tujuan pinjam, jangka waktu, kondisi debitur, penghasilan debitur dan jaminan.
fatcat:es7favl2y5e23dltsknw4eocbq