Faster Fixed Parameter Tractable Algorithms for Undirected Feedback Vertex Set [chapter]

Venkatesh Raman, Saket Saurabh, C. R. Subramanian
<span title="">2002</span> <i title="Springer Berlin Heidelberg"> <a target="_blank" rel="noopener" href="" style="color: black;">Lecture Notes in Computer Science</a> </i> &nbsp;
A feedback vertex set (fvs) of a graph is a set of vertices whose removal results in an acyclic graph. We show that if an undirected graph on n vertices with minimum degree at least 3 has a fvs on at most 1 3 n 1− vertices, then there is a cycle of length at most 6 (for ≥ 1/2, we can even improve this to just 6). Using this, we obtain a O(( 12 log k log log k + 6) k n ω ) algorithm for testing whether an undirected graph on n vertices has a fvs of size at most k. Here n ω is the complexity of
more &raquo; ... e best matrix multiplication algorithm. The previous best parameterized algorithm for this problem took O((2k + 1) k n 2 ) time. We also investigate the fixed parameter complexity of weighted feedback vertex set problem in weighted undirected graphs.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.1007/3-540-36136-7_22</a> <a target="_blank" rel="external noopener" href="">fatcat:x3msdxladjfl7npwsi5zzxzn5y</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> </button> </a>