A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit <a rel="external noopener" href="https://core.ac.uk/download/pdf/82594166.pdf">the original URL</a>. The file type is <code>application/pdf</code>.
Spaces of valuations as quasimetric domains
<span title="">1998</span>
<i title="Elsevier BV">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/uy5mv2ncw5eahkdx47hkrglxmm" style="color: black;">Electronical Notes in Theoretical Computer Science</a>
</i>
We de ne a natural quasimetric on the set of continuous valuations of a topological space and investigate it in the spirit of quasimetric domain theory. It turns out that the space of valuations of an (ordinary) algebraic domain D is an algebraic quasimetric domain. Moreover, it is precisely the lower powerdomain of D, where D is regarded as a quasimetric domain. The essential tool for proving these results is a generalization of the Splitting Lemma which c haracterizes the quasimetric for
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/s1571-0661(05)80223-3">doi:10.1016/s1571-0661(05)80223-3</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/47szleopyfczhh6p2zc5zl5gk4">fatcat:47szleopyfczhh6p2zc5zl5gk4</a>
</span>
more »
... e valuations and holds for valuations on arbitrary topological spaces.
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20190228212442/https://core.ac.uk/download/pdf/82594166.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/20/ce/20ce124d68228cc9388a60f11a695359c32861f3.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/s1571-0661(05)80223-3">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="unlock alternate icon" style="background-color: #fb971f;"></i>
elsevier.com
</button>
</a>