Some Complexity Results for Polynomial Ideals

Ernst W. Mayr
1997 Journal of Complexity  
In this paper, we survey some of our new results on the complexity of a number of problems related to polynomial ideals. We consider multivariate polynomials over some ring, like the integers or the rationals. For instance, a polynomial ideal membership problem is a (w + 1)-tuple P = ( f, g 1 , g 2 , . . . , g w ) where f and the g i are multivariate polynomials, and the problem is to determine whether f is in the ideal generated by the g i . For polynomials over the integers or rationals, this
more » ... problem is known to be exponential space complete. We discuss further complexity results for problems related to polynomial ideals, like the word and subword problems for commutative semigroups, a quantitative version of Hilbert's Nullstellensatz in a complexity theoretic version, and problems concerning the computation of reduced polynomials and Gröbner bases. © 1997 Academic Press
doi:10.1006/jcom.1997.0447 fatcat:d3cz6pfw3za4disutcnitfvlsa