A voltage-dependent fluorescent indicator for optogenetic applications, archaerhodopsin-3: Structure and optical properties from in silico modeling

Dmitrii M. Nikolaev, Anton Emelyanov, Vitaly M. Boitsov, Maxim S Panov, Mikhail N. Ryazantsev
2017 F1000Research  
It was demonstrated in recent studies that some rhodopsins can be used in optogenetics as fluorescent indicators of membrane voltage. One of the promising candidates for these applications is archaerhodopsin-3. However, the fluorescent signal for wild-type achaerhodopsin-3 is not strong enough for real applications. Rational design of mutants with an improved signal is an important task, which requires both experimental and theoretical studies. Herein, we used a homology-based computational
more » ... oach to predict the three-dimensional structure of archaerhodopsin-3, and a Quantum Mechanics/Molecular Mechanics (QM/MM) hybrid approach with high-level multireference ab initio methodology (SORCI+Q/AMBER) to model optical properties of this protein. We demonstrated that this methodology allows for reliable prediction of structure and spectral properties of archaerhodopsin-3. The results of this study can be utilized for computational molecular design of efficient fluorescent indicators of membrane voltage for modern optogenetics on the basis of archaerhodopsin-3. PubMed Abstract | Publisher Full Text 3. Kralj JM, Hochbaum DR, Douglass AD, et al.: Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Science. 2011; 333(6040): 345-348. PubMed Abstract | Publisher Full Text 4. Kralj JM, Douglass AD, Hochbaum DR, et al.: Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat Methods. 2012; 9(1): 90-95. PubMed Abstract | Publisher Full Text | Free Full Text 5. Mclsaac RS, Engqvist MK, Wannier T, et al.: Directed evolution of a far-red fluorescent rhodopsin. Proc Natl Acad Sci U S A. 2014; 111(36): 13034-13039. PubMed Abstract | Publisher Full Text | Free Full Text 6. Westbrook J, Feng Z, Chen L, et al.: The Protein Data Bank and structural genomics. Nucleic Acids Res. 2003; 31(1): 489-491. PubMed Abstract | Publisher Full Text | Free Full Text 7. Kelm S, Shi J, Deane CM: MEDELLER: homology-based coordinate generation for membrane proteins. Bioinformatics. 2010; 26(22): 2833-2840. PubMed Abstract | Publisher Full Text | Free Full Text A, et al.: The I-TASSER Suite: protein structure and function prediction. Nat Methods. 2015; 12(1): 7-8. PubMed Abstract | Publisher Full Text | Free Full Text 9. Song Y, DiMaio F, Wang RY, et al.: High-resolution comparative modeling with RosettaCM. Structure. 2013; 21(10): 1735-1742. PubMed Abstract | Publisher Full Text | Free Full Text 10. Hill JR, Deane CM: MP-T: improving membrane protein alignment for structure prediction. Bioinformatics. 2013; 29(1): 54-61. PubMed Abstract | Publisher Full Text 11. Stamm M, Staritzbichler R, Khafizov K, et al.: AlignMe--a membrane protein sequence alignment web server. Nucleic Acids Res. 2014; 42(Web Server issue): W246-W251. PubMed Abstract | Publisher Full Text | Free Full Text 12. Wu S, Zhang Y: MUSTER: Improving protein sequence profile-profile alignments by using multiple sources of structure information. Proteins. 2008; 72(2): 547-556. PubMed Abstract | Publisher Full Text | Free Full Text 13. Dolinsky TJ, Nielsen JE, McCammon JA, et al.: PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 2004; 32(Web Server issue): W665-W667. PubMed Abstract | Publisher Full Text | Free Full Text 14. Best RB, Zhu X, Shim J, et al.: Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and sidechain χ 1 and χ 2 dihedral angles. J Chem Theory Comput. 2012; 8(9): 3257-3273. PubMed Abstract | Publisher Full Text | Free Full Text 15. Phillips JC, Braun R, Wang W, et al.: Scalable molecular dynamics with NAMD. J Comput Chem. 2005; 26(16): 1781-1802. PubMed Abstract | Publisher Full Text | Free Full Text 16. Zhu S, Brown MF, Feller SE: Retinal conformation governs pK a of protonated Schiff base in rhodopsin activation. J Am Chem Soc. 2013; 135(25): 9391-9398. PubMed Abstract | Publisher Full Text | Free Full Text 17. Klauda JF, Venable RM, Freites JA, et al.: Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B. 2010; 114(23): 7830-7843. PubMed Abstract | Publisher Full Text | Free Full Text 18. MacKerrel AD, Bashford D, Bellot M, et al.: All-atom emperical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B. 1998; 102(18): 3586-3616. PubMed Abstract | Publisher Full Text 19. Darden TA, York D, Pedersen LG: Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems. J Chem Phys. 1993; 98(12): 10089-10092. Publisher Full Text 20. Ross GA, Morris GM, Biggin PC, et al.: Rapid and accurate prediction and scoring of water molecules in protein binding sites. PLoS One. 2012; 7(3): e32036. PubMed Abstract | Publisher Full Text | Free Full Text 21. Altun A, Morokuma K, Yokoyama S: H-bond network around retinal regulates the evolution of ultraviolet and violet vision. ACS Chem Biol. 2011; 6(8): 775-780. PubMed Abstract | Publisher Full Text | Free Full Text 22. Melloni A, Rossi Paccani R, Donati D, et al.: Modeling, preparation, and characterization of a dipole moment switch driven by Z/E photoisomerization. J Am Chem Soc. 2010; 132(27): 9310-9319. PubMed Abstract | Publisher Full Text 23. Ryazantsev MN, Altun A, Morokuma K: Color tuning in rhodopsins: the origin of the spectral shift between the chloride-bound and anion-free forms of halorhodopsin. J Am Chem Soc. 2012; 134(12): 5520-5523. PubMed Abstract | Publisher Full Text | Free Full Text
doi:10.12688/f1000research.10541.1 pmid:28435665 pmcid:PMC5381632 fatcat:3sgux6b7v5dsplerrzf6trh7tu