Inhibition of the Microsomal Triglyceride Transfer Protein Blocks the First Step of Apolipoprotein B Lipoprotein Assembly but Not the Addition of Bulk Core Lipids in the Second Step

David A. Gordon, Haris Jamil, Richard E. Gregg, Sven-Olof Olofsson, Jan Borén
1996 Journal of Biological Chemistry  
The microsomal triglyceride transfer protein (MTP) is required for assembly and secretion of the lipoproteins containing apolipoprotein B (apoB): very low density lipoproteins and chylomicrons. Evidence indicates that the subclasses of these lipoproteins that contain apoB-48 are assembled in a distinct two-step process; first a relatively lipid-poor primordial lipoprotein precursor is produced, and then bulk neutral lipids are added to form the core of these spherical particles. To determine if
more » ... either step is mediated by MTP, a series of clonal cell lines stably expressing apoB-53 and MTP was established in non-lipoprotein-producing HeLa cells. MTP activity in these cells was ϳ30%, and apoB secretion was 7-33% of that in HepG2 cells on a molar basis. Despite having robust levels of triglyceride and phospholipid synthesis, these cell lines, as exemplified by HLMB53-59, secreted >90% of the apoB-53 on relatively lipid-poor particles in the density range of 1.063-1.21 g/ml. These results suggested that coexpression of MTP and apoB only reconstituted the first but not the second step in lipoprotein assembly. To extend this observation, additional studies were carried out in McArdle RH-7777 rat hepatoma cells, in which the second step of apoB-48 lipoprotein assembly is well defined. Treatment of these cells with the MTP photoaffinity inhibitor BMS-192951 before pulse labeling with [ 35 S]methionine/cysteine led to an 85% block of both apoB-48 and apoB-100 but not apoAI secretion, demonstrating inhibition of the first step of lipoprotein assembly. After a 30-min [ 35 S]methioneine/cysteine pulse labeling and 120 min of chase, all of the nascent apoB-48 was observed to have a density of high density lipoproteins (1.063-1.21 g/ml), indicating that only the first step of lipoprotein assembly had occurred. The addition of oleic acid to the cell culture media activated the second step as evidenced by the conversion of the apoB-48 high density lipoproteins to very low density lipoproteins (d < 1.006 g/ml) during an extended chase period. Inactivation of MTP after completion of the first step, but before stimulation of the second step by the addition of oleic acid, did not block this conversion. Thus, inhibition of MTP did not hinder the addition of bulk core lipid to the primordial lipoprotein precursor particles, indicating that MTP is not required for the second step of apoB-48 lipoprotein assembly.
doi:10.1074/jbc.271.51.33047 pmid:8955151 fatcat:5dabktbg6bh3hechvzvkyrk7jm