A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES
2018
Bulletin of Symbolic Logic
AbstractWe introduce a new hierarchy of computably enumerable degrees. This hierarchy is based on computable ordinal notations measuring complexity of approximation of ${\rm{\Delta }}_2^0$ functions. The hierarchy unifies and classifies the combinatorics of a number of diverse constructions in computability theory. It does so along the lines of the high degrees (Martin) and the array noncomputable degrees (Downey, Jockusch, and Stob). The hierarchy also gives a number of natural definability
doi:10.1017/bsl.2017.41
fatcat:qa45hxbavfexbfcp5gn2zr5rhm