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One of the most important prob-
lems a portfolio manager faces 
is finding the right weights for 
portfolio assets. Arthur D. Roy 

[1952] made a major theoretical development 
for the solution to this problem by answering 
the following question: if we know the first 
two moments of returns—their expected 
returns and their covariance matrix—what 
asset weights would maximize the portfo-
lio’s mean-volatility ratio? We will call such 
portfolios tangency portfolios, because the 
line drawn from the risk-free rate will have 
the highest Sharpe ratio, and be tangent to, 
these portfolios.1

Portfolio managers have long recog-
nized a major problem with the tangency 
portfolio: the methodology requires knowing 
the future first and second moments of asset 
returns, and it is extremely difficult to esti-
mate those, especially the f irst moments. 
Merton [1980] is the classic paper showing 
that estimating expected returns requires 
a longer time period; estimating variance 
requires finer observations of returns.

Even worse, with accumulated knowl-
edge it became clear that in some important 
cases, the weights proposed by the tangency 
approach were diff icult to reconcile with 
portfolio managers’ intuition and experi-
ence. Even Markowitz himself didn’t follow 
this methodology when constructing his own 
portfolio. According to Zweig [2009], he 

simply invested 50/50 in stocks and bonds. 
Further, the tangency weights are fragile 
to the assumptions and can change wildly 
(Britten-Jones [1999]).

Risk parity (RP) is an alternative port-
folio construction approach that allocates 
capital to each asset in inverse proportion 
to its future expected volatility. Although 
it appears to take no account of expected 
returns, it subtly does: it requires its assets to 
have a positive expected return; otherwise, a 
short position with the same volatility would 
be preferred.

Risk parity has historically tended to 
outperform tangency and other standard port-
folio allocation methods, and several expla-
nations for its success have been advanced. 
Chaves et al. [2011] (among others) compared 
risk parity with other more standard methods. 
Asl and Etula [2012] discuss risk parity and 
similar portfolio construction strategies 
from the perspective of robust optimization; 
building on Scherer [2007], Meucci [2007], 
and Ceria and Stubbs [2006], they consider 
the standard errors of the expected return 
estimations as the sole source of uncertainty, 
and show that in such cases, portfolios sim-
ilar to but different from risk parity would 
be optimal. By contrast, we consider two 
more general cases that depend only on mild 
conditions on future asset Sharpe ratios to 
show that pure risk parity would be uniquely 
optimal.
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Asness et al. [2012] show that leverage aversion 
can lead to excess returns in a risk parity portfolio, and 
they document risk parity’s historical and sustained out-
performance. Here we show that, even if leverage aver-
sion did not apply, risk parity would still beat any other 
portfolio, on average and under the precise conditions 
we provide. Thus, our explanation may be viewed as 
more fundamental.

DeMiguel et al. [2009] explore the equally 
weighted portfolio strategy that often beats tangency as 
well. However, we show the general conditions under 
which risk parity would beat any portfolio, including the 
equally weighted one. This gives us an additional, inter-
esting intermediate result: while the tangency portfolio 
tries to use all available information, and the equally 
weighted portfolio seems to use none of the available 
information, risk parity uses some but not all of the 
available information and beats them both, as well as 
any other portfolio.

The question of why risk parity works can be 
thought of as a battleground in the larger war between 
seemingly ad hoc, heuristics-based approaches and tra-
ditional optimization approaches to finance in general, 
and portfolio management specif ically. By exploring 
this arena in detail, we aim to shed light on the larger 
question.

The term “heuristics” generally means “rule of 
thumb.” It is used in behavioral sciences in a predomi-
nately pejorative sense, when compared to unattainable, 
perfect rationality. However, in computational discus-
sions, heuristics are simple but crucial algorithms that 
substantially improve performance. In the context of 
boundedly rational investor behavior, Gigerenzer [2012] 
argues that particular heuristics are “ecological,” in the 
sense that they can be helpful in particular circum-
stances, and are neither universally good nor universally 
bad. Goldstein and Gigerenzer [2009] show that fast and 
frugal heuristics can make better predictions than more 
complex and knowledge-intensive rules.

In this context, we argue that risk parity, as a fast 
and frugal heuristic, tends to outperform the more com-
plex and knowledge-intensive mean–variance approach. 
It also tends to outperform the overly simple and nearly 
entirely knowledge-independent equally weighted 
approach.

Of course, risk parity’s outperformance is not ubiq-
uitous. Indeed, during 2012, because of bonds’ lack-

luster performance, tangency actually beat risk parity. 
That makes the main questions of this article especially 
timely: are there conditions under which the risk parity 
approach is optimal in some sense? Can we estimate the 
probability that risk parity will outperform? This article 
addresses these questions and more in a novel and gen-
eral theoretical framework, with supporting empirical 
results.

RISK PARITY, EQUAL RISK CONTRIBUTION, 
EQUAL WEIGHT, AND TANGENCY 
PORTFOLIOS

Let X
T
 be a vector of random excess returns of n 

assets: XT = (X
1
, …, X

n
) such that E(X) = μ and Var(X) = 

∑, where μT = (μ
1
, …, μ

n
). and ∑ = {σ

i,j
},i,j = 1, …, n.

We write XT, the transpose of X, to emphasize 
that we normally define new vectors as column vectors. 
Thus, X is a column vector and XT is a row vector.

Let τ be the assets’ Sharpe ratios: τ = μ{ ,τ = μ
σ

T
i i

= 1, , }i n… .
We’l l use the fact that ∑ = ΛσRΛσ and 

1 1Σ =1 Λ Λ1
1σ σ1 , where R is the correlation matrix and 

Λ
x
 is the diagonal matrix with vector x on its diagonal. 

So 11 111 111)1 RT T11111Σ)1 T σ =1� �( , where 1 is a column vector 
of ones.

The Sharpe ratio of a portfolio with weights WT = 
(w

1
, …, w

n
) is

( , )SR SR
w

w w

T

T
= μ( ,SR ∑ =)

μ
∑

We can rewrite this as

( , , )= τ( , = τ
SR SR ,τ, w

w Rw

T

T

It is well known that the maximum of the Sharpe 
ratio over all possible weights is

max ( , ) ( , ) 1w, ) (
w R

T
n

*μ ∑,, = μ( ,w( ∑ =) μ ∑T μ−

and the optimal weights w* could be any weights that 
are proportional to w* ∼ ∑−1μ.

With the normalizing condition 1Tw = 1, the 
optimal weights—the weights of the tangency portfo-
lio—are as follows:

JPM-FISHER.indd   43JPM-FISHER.indd   43 1/20/15   9:19:18 PM1/20/15   9:19:18 PM



44   RISK PARITY OPTIMALITY WINTER 2015

1 ( )

1

1w T
* = ∑ μ1

⋅ ∑( μ−

For the equally weighted portfolio, of course, the 
weights are simply

1111
w

n

T
* =

This is the same portfolio as the tangency port-
folio, in the case of uncorrelated assets with identical 
Sharpe ratios.

The risk parity (RP) weights v: vT = (v
1
, …, v

n
) 

are (by definition) inversely proportional to the asset 
volatilities:

1
, ,

1
, , 1, ,1

1
,σ

σ σ1

⎛
⎝⎝⎝

⎞
⎠⎠⎠

, = …1,,,
⎠⎠⎠

,v i~ ,1σ =1 ⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

σ = σ− ,… ,
⎠⎠⎠

σ , ndef==e

n

T

i iσσ i

Taking into account the normalizing constraint 
∑

i
v

i
 = 1, we have

1111
, 1, , ,

1

1

1

1v ,1 n v,i
i

i
T…∑

σ
σ

=1 n v
σ
σ

−

−

−

−

And its Sharpe ratio is

)

)

1

1 1
SR

T

T

� �(

� �(
=

μ)T�
Σ)1 T� σ

−

−

Let us define the equal risk contribution (ERC) 
portfolio. The volatility of a portfolio with weights u:
uT = (u

1
, …, u

n
) is

( ) ∑ ∑2 2σ =( ) Σ = 2 σu=) u ∑= u uT

i i ju ijj i≠i

Define the risk contribution of asset i as

( )
( )

( )

2

σ =( )
∂σ
∂

=
σ +2 Σ σ

σ
u=)

u
u

u σ + Σ
i

defe

i
i

i
i iσσ j i≠ j iσ ji

Therefore the portfolio’s risk (volatility) can be 
presented as the sum of its asset risks:

( ) ( )
1

∑σ =( ) σ
=

(∑=) σ i
i

n

The equal risk contribution portfolio is defined by 
requiring that all assets’ risks are equal:

( )
( )

, 1, ,
n

n1, ,iσ =( )i

σ

Two additional constraints are usually enforced: 
the normalizing constraint, ∑u

i
 = 1, and the constraint 

forbidding short-selling, 0 ≤ u
i
 ≤ 1, i = 1, …, n.

These definitions are not universally accepted. 
Sometimes equal risk contribution portfolios are called 
risk parity portfolios, and what we def ine as a risk 
parity portfolio is sometimes called a naïve risk parity 
portfolio.

Actually, it would be more exact and spe-
cif ic to call an RP portfolio a volatility parity port-
folio and an ERC portfolio a beta parity portfolio. 
Here is why (see Maillard et al. [2010]): Denote the 
covariance between the ith asset and the portfolio by 

cov( ,X ,iP i j,, � �))i i j i ijσ =iP Σ � )) uj iu . Then ( ) ( )i
ui iPσ =( )i

σ
σ . By 

definition, the beta of asset i with the portfolio is 
( )2i
iPβ =i

σ
σ . 

We know that, for the ERC portfolio, ( ) ( )
i nσ =( )i

σ  for 
all i = 1, …, n. Therefore,

( ) ( ) 1 1

1= σ σ( )
σ

= β = β
Σβ

−1

−u
(σ)

ni
i

iP

i iβ

i

This is the same formula as for RP, but using betas 
instead of volatilities.

In a very important general parameter case, the 
RP portfolio is the same as the ERC portfolio. Maillard 
et al. [2010] proved that ERC becomes an RP portfolio 
when the correlations among all assets are the same. In 
particular, for n = 2, the ERC portfolio is the RP port-
folio. Exact formulas for the ERC portfolio’s weights 
are not known in the general case. Chaves et al. [2012] 
analyze algorithms for computing those weights.

GAME THEORY FRAMEWORK

Because game theory is not often used in portfolio 
theory, let’s review some basic game theory concepts to 
clarify our approach. Let’s define a two-player, zero-sum 
game. Two players are playing a game; the object is to 
maximize payoff. Each player knows two abstract sets: 
A and B. Set A is player 1’s set of strategies (or actions or 
decisions), and set B is player 2’s strategies. The strategies 
are also called pure strategies, to distinguish them from 
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mixed strategies, which are randomized pure strategies. 
Of course, any pure strategy is a mixed strategy, con-
centrated in one decision. Both players also know the 
payoff function φ(a, b), a∈A, b∈B.

To play the game, player 1 chooses a∈A and player 
2 chooses b∈B simultaneously, each unaware of the oth-
er’s choice. Then their choices are revealed. Player 1 
receives φ(a, b) and player 2 receives −φ(a, b). The total 
is zero, which is why this is called a zero-sum game. 
So φ(a, b) is a gain for player 1 and a loss for player 2. 
Player 1 wants to maximize the payoff; player 2 wants 
to minimize it.

In our case, player 1 is a portfolio manager who 
wants to find the portfolio weights of n assets, such that 
portfolio performance is the best under the market’s 
worst possible action. Player 2 is the market. A is a set 
of portfolio weights available to the portfolio manager, 
B is a set of parameters of distribution of assets’ excess 
returns, from which the market “chooses” parameters 
that will “hurt” the fund manager’s performance the 
most. The manager’s performance is measured either by 
expected return or by Sharpe ratio.

A game is a matrix game if sets A and B are finite. 
Let’s look at an example of a two-player, zero-sum matrix 
game. Assume A = {a

1
, a

2
}, B = {b

1
, b

2
}, and the first play-

er’s payoff function is defined by the following table:

1 2

3 4

1 2

1

2

b b1

a

a

Find V
1
, player 1’s maximin total gain for the 

game. If player 1 chooses a
1
, then player 2 can harm-

fully choose b
1
, and player 1 will receive φ(a

1
, b

1
) = 1. If 

player 1 chooses a
2
, then player 2 can harmfully choose 

b
1
 again, and player 1 will receive φ(a

2
, b

1
) = 3. Thus 

V
1
 = 3. In general, V

1
 is defined as

( , )1 = φiV (1 = φmax min b
a A∈ b B∈

In the same way, we can find V
2
, the minimax loss 

of the game for player 2: in this case, V
2
 = 3. In general, 

V
2
 is defined as

( , )2 = φiV (2 = φminmax b
b B∈ a A∈

It could be shown that V
1
 ≤ V

2
 for any A, B, and 

φ, because for every fixed a, b

n max ( , )b b,
b B a A

* *(b
* *

φ ≤( , )a b, * ) φ ≤( , )b,( )b φ

Taking the maximum on the left and the minimum 
on the right doesn’t change the inequality.

If V
1
 = V

2
, then V = V

1
 is called the game’s value:

( , ) ( , )= φi φ(V = φmax min b a) (= φminmax b
defe

a A∈ b B∈ b B∈ a A∈

when this equality holds, it is said that the game has a 
solution, allowing us to f ind the game’s value and at 
least one optimal strategy for each player. Theorems 
establishing under what conditions games have values 
are called the minimax theorems.

Does the game always have a solution at least for 
2 × 2 strategies?

A matrix game always has a solution among pure 
strategies if the matrix has a saddle point, that is, the 
payoff matrix has at least one element that is the min-
imum in its row and the maximum in its column. In 
our example, the matrix has a saddle point in row 2 and 
column 1: the value 3. But the following matrix doesn’t 
have a saddle point:

1 3

4 2

1 2

1

2

b b1

a

a

It is easy to see that in this game, V
1
 = 2 and V

2
 = 3, 

so there is no solution among pure strategies.
For a matrix game, however, a solution always 

exists among mixed strategies. This von Neumann’s 
famous result [1928]. The solution, the mixed strate-
gies of player 1 and player 2, is the Nash equilibrium, 
following Nash [1951], who generalized von Neumann’s 
result for non-zero-sum games. At a Nash equilibrium, 
each player is making the best possible decision, taking 
the other player’s decision into account.

In our second example, there exists a solution 
among mixed strategies for this game with the value 
V = 2, when player 1 chooses a

1
 with probability ½ 

and player 2 chooses b
1
 with probability ¼.

Normally, the minimax property is attributed to 
the players’ optimal strategy in games with a Nash equi-
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librium, when the game has a solution. When the game 
is analyzed only from the first player’s point of view, the 
strategy that maximizes that player’s minimum possible 
payoff is called maximin.

MINIMAX PROPERTY OF RISK PARITY 
AND OTHER PORTFOLIOS

Suppose that the variance–covariance matrix ∑ of 
the n assets’ excess returns is known, but the vector of 
expected values μ (and therefore τ) is not known. We 
only know that the μ (or, equivalently, τ) belongs to a 
known set of vectors. We want to find the minimax 
portfolio in returns: the portfolio whose expected value 
is the greatest among the worst possible vectors μ.

We will find that any portfolio is a minimax port-
folio among all portfolios without short sales for a set of 
assets, when a linear inequality constrains their expected 
returns. We will see that in two natural special cases, 
the minimax portfolio is the equally weighted or risk 
parity portfolio.

We start by finding the portfolio that has the best 
return under the assets’ worst distributional assumptions. 
Let Ωn be the set of all possible normalized portfolios 
without short sales:

{ : 1 0 1, 1, , }Ω = Σ = ≤ ≤ …w: Σ 1, n
defe

i i1,0

and let the set of all possible assets’ expected values be 
constrained by a set ∈

nM , which is a set of non- negative 
vectors above a hyperplane:

: 0, 1, ,1

1

n1 ,n defe

n
i 0, ,1,M = μf μ

∈
μ
∈

μ,≥ μ11, ≥ =00,
⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬∈

Then there exists a portfolio with weights w* ∈ Ωn 
and returns nMμ ∈ ∈

*  such that

 

i ( ) min

max ( ( ) )

V Emax min

w( X ) X)

defe

w

T

w

T T) ( )X ) )

n n n
( )

n

*� �((

M Mn
( ) =( )Emax min

∈Ω μ∈ μ

∈Ω μ μ( )w( X )

∈ ∈Mμ∈

 
(1)

and

1111
1

( 1V T � �)
= −

The portfolio

 � � � �
� �

=
−

−
*

1111
)�* )�

(�

1

1
T

T
 (2)

is the only minimax portfolio, such that

in ) )V min )T
n

*� �(w
Mμ∈ μ

∈

and the vector μ*

 1111
1111

)
( ) 1

T
T

T
*� �( =)T� −

 (3)

is the only minimax vector of the assets returns, such 
that

 x ( )
∈Ω μV max= w X

w

T
n

 (4)

The proof is in Appendix A.
We have also proved more generally that any port-

folio is a minimax portfolio for a set of constrained, 
expected values ∈

nM , if (as shown by Equation (2)) the 
vector ∈ is inversely proportional to the weights. By ana-
lyzing any manager’s portfolio, we can make a statement 
about that manager’s view of future expected returns.

Consider the following two important cases.

Minimax Property of Expected Value 
of Equally Weighted Portfolio

If the sum of assets’ non-negative expected returns 
is greater than a certain (unknown) value, then the 
equally weighted portfolio is the only minimax port-
folio among all portfolios without short sales. In other 
words, if the portfolio manager knows that the sum of all 
non-negative expected returns is greater than a certain 
(unknown) constant, then (regardless of the constant) 
the minimax portfolio is the equally weighted portfolio: 
the portfolio that has the greatest expected value under 
the worst possible scenario.

The proof follows from the minimax property of 
a general portfolio, if we take all ∈

i
 as equal to each 

other.

JPM-FISHER.indd   46JPM-FISHER.indd   46 1/20/15   9:19:21 PM1/20/15   9:19:21 PM



THE JOURNAL OF PORTFOLIO MANAGEMENT   47WINTER 2015

Minimax Property of Expected Value 
of Risk Parity Portfolio

If the sum of assets’ non-negative, expected Sharpe 
ratios is greater than a certain (unknown) constant, then 
the risk parity portfolio is the only minimax portfolio 
among all portfolios without short sales. In other words, 
if the portfolio manager knows that the sum of all non-
negative assets’ Sharpe ratios is greater than a certain 
(unknown) constant, then (regardless of the constant) 
the minimax portfolio is the risk parity portfolio: the 
portfolio that will have the greatest expected value under 
the worst possible scenario.

The proof follows from the minimax property of 
a general portfolio, if we take all ∈

i
 to be proportional 

to asset volatilities.

MAXIMIN PROPERTIES OF RISK PARITY

In this section, we will establish two maximin 
properties of risk parity.

In both cases, we fix a certain set of parameters and 
show that the minimum Sharpe ratio of the RP portfolio 
on this set is greater than the minimum Sharpe ratio on 
the same set of any other portfolio.

We look at portfolio manager activity as a two-
stage game. In stage one, the portfolio manager chooses 
portfolio weights from some fixed set of weights. In 
stage two, the market chooses the parameters of the 
assets’ excess return distribution from some other set. We 
can assume the worst possible scenario for the portfolio 
manager: that the market always chooses the distribution 
that creates the worst possible manager performance. If 
the portfolio manager’s performance is measured by the 
portfolio’s Sharpe ratio, how should the manager choose 
the portfolio?

We can’t directly use the standard game’s theo-
retical approach of mixed strategies, as we did for the 
minimax results, because we measure a strategy’s perfor-
mance by its Sharpe ratio, not by its expected value.

Each Asset’s Sharpe Ratio Is Positive 
and all Correlations Are Less Than One

Let’s assume again that the portfolio manager 
knows the asset volatilities but does not know either 
the assets’ expected returns or the correlations between 
asset returns.

Yet the manager knows something and chose assets 
with enough care to be reasonably certain that any asset’s 
worst Sharpe ratio is still positive. In other words, the 
manager knows that each chosen asset should have a 
positive expected return but doesn’t necessarily know 
which asset will perform better than the others. Further, 
the manager also believes that different assets are indeed 
different, with correlations of less than one.

We want to prove the following statement: the risk 
parity portfolio with weights 

1

1w T1
* = σ

σ

−

−  is the only max-
imin portfolio with respect to the Sharpe ratio SR,

( , , )
( ( )

,SR SR R,
w

R

T

T� �))
= μ( ,SR , =, )R,

μ
(R�))

among all portfolios without short sales w ∈ Ωn, such 
that

min ( , , ) i ( , , )
1, 1

( )
, 1

w( F) i R, ,
M R1, R w M1,

* μ σ, = μa ( ,
1 1

Fmax min ,
1nμ∈ ∈ ∈Ω μ∈

where

{ }…∑Ω = ∑∑defe

…μ μ
σ

≥ =
⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬⎨1 0, 1, ,iM

μ ≥ ∈>1 := μ⎨ 0, n
defe i

i

1 ,0 1, 1, 1, ,,R1 ,0 1, 1, n
defe

i j, i
i j

i j
i i, …ρ

σ
σ σi

≤ δ < δ ρ,1, 1
⎛

⎝

⎛⎛

⎝⎝

⎞

⎠
⎟
⎞⎞

⎠⎠
≠

The proof is in Appendix B.
Analysis of the proof shows that the risk parity is 

the only maximin portfolio.

The Sum of All Assets’ Sharpe Ratios 
Is Positive

Let us prove that the risk parity is a maximin 
portfolio in Sharpe ratio, when the sum of the Sharpe 
ratios of all of the assets is greater than some positive 
constant.

2 : 1 0
1

M
defe T

i

i

ii

n

∑μ μ
σ

μ
σ

≥
⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬

=
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This parameter set describes a situation in which 
the portfolio manager is reasonably certain that, in the 
worst case, the total sum of all assets’ Sharpe ratios cannot 
be less than some positive constant. Any particular asset 
may even have a negative Sharpe ratio, so long as the 
simple total (or average) across all assets is still positive.

We want to prove the following statement: the 
risk parity portfolio with weights 

1

1

1w T= σ
σ

−

−
*  is the only 

maximin with respect to Sharpe ratio SR,

( , ) ,= μ( , Σ =)
μ
Σ

SR SR
w

w wΣ

T

T

among all portfolios without short sales w ∈ Ωn, such 
that

min ( , ) m i ( , )
2 2

( )w , ) m i (
M w

* μ Σ,, μ( ,
2

max min w(
n

Σ
μ∈ ∈Ω μ

where

{ }: , 1, ,∑Ω = 1 0 1: ,1,
defe

1,01,0

2 : 1 0
1

M T i

ii

n

∑μ μ
σ

μ
σ

≥
⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬

=

The proof is in Appendix C.
Analysis of the proof shows that the risk parity is 

the only maximin portfolio.

WHEN RISK PARITY BEATS TANGENCY 
BY SHARPE RATIO

Say that weights w outperform weights v for a given 
m and S if they result in a higher Sharpe ratio:

( ; , ) ( ; , )= ≥ =SR m;
w m

w Sw
SR m;

v m

v Sv

T

T

T

T

where m are the assets’ future expected returns, S is the 
assets’ future variance matrix, and w and v are portfolio 
weights based on the past expected returns μ and the 
past variance matrix ∑.

Taking w as the weights for the risk parity  portfolio, 
and v as the weights for the tangency portfolio, we see 
that risk parity outperforms tangency if and only if
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This defines an n-dimensional hyperplane for the 
vectors m. This hyperplane passes through the origin 
and is perpendicular to the vector:
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The future returns do not depend on the future 
variance matrix and therefore risk parity beats tangency 
in expected returns if and only if

11 111
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Σ μ1
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>
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Case when the Future Variance Matrix 
Is Equal to the Past Variance Matrix

If the future variance matrix is equal to the past, 
then risk parity beats tangency if and only if

)
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Let us simplify the general expression for the 
difference in Sharpe ratios between RP and any arbi-
trary portfolio, if the future variance matrix is equal 
to the past. We will use the fact that ∑ = ΛσRΛσ and 

1 1Σ =1 Λ Λ1
1σ σ1  where R is the correlation matrix and 

Λ
x
 is the diagonal matrix with vector x on its diagonal. 

Then 11 111 111,1 11111x x
T

x x
T Λ = 1 . So:

11 111 111)1 RT T11111� �( Σ)1 T� σ =1

Let us use the Sharpe ratios instead of expected 
returns of assets:

, 1, , , , 1, ,τ = τ = μ
σ

⎧
⎨
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⎫
⎬
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m
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i
i

i

defe

ii
i

i

We already established that RP outperforms any 
portfolio with weights w by Sharpe if
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If v
defe { }, 1, ,v w n1, ,i iw i= σw = {v ,i , then the last 

inequality can be rewritten as
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If w are the weights of the tangency portfolio, then 
((τ σ) −i = τ_i σ_i, = 1, …, n).
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Therefore RP beats tangency in Sharpe ratio if 
and only if

 11 111 111
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PROBABILITY THAT RISK PARITY 
BEATS ANY OTHER PORTFOLIO 
IS GREATER THAN 50%

Assume that all future asset variances are the same 
as the past and all future asset correlations are equal to 
a non-negative number. Assume that the directions of 
the assets’ future Sharpe ratios t are drawn completely 
randomly from the positive hyperquadrant.

{ 0, , 0}{ ≥+ …R {= {+ tn n{ 0, ,1

Then we can show that the probability that risk 
parity beats any other portfolio with positive coefficients 
by Sharpe ratio is greater than 50%.

To begin, we rewrite the inequality (Equation (5)) as

 ( ) 0>)t( dR
 (7)

where e , ||||d
defe

n
v
v

1 =  and 1 1||||CR

defe R v1||

n v Rv

T

T .
The vector e is the rotation axis of +Rn . Therefore, 

to prove our statement it is sufficient to prove that either 
A) d and e lie on different sides of the hyperplane defined 
by Equation (7), or B) d and e lie on the same side of the 
hyperplane, but the distance of d (which is a unit vector 
in the direction of the portfolio with weights v) from 
the hyperplane is longer than the distance of e from the 
same hyperplane.

Assume for all v and R that C
R
 ≥ 1 (we will prove 

this statement at the end). Then,

 ( ) 0=) − <d e( d deR R) de c  (8)

because d and e are unit vectors.
Now let us analyze the two cases.

A. Because of Equation (8), for d and e to lie on dif-
ferent sides of the hyperplane, we must have

( ) 0>)e( dR

which is equivalent to

 1<de
cR

 (9)

B. We can now assume that Equation (9) doesn’t 
hold

 1≥de
cR

 (10)

The distance from a unit vector u to a plane passing 
through the origin perpendicular to a vector h is uh

h
. 

For our hyperplane, defined by Equation (7), h = e − C
R
d. 

Therefore, the distance from d to the hyperplane is

| |d c| deR R| c|| −

because C
R
 > 1 ≥ de. The distance from e to the hyper-

plane is

|1 | 1c de| dR R|de|− c de|

where the last equation follows because of Equation (10).
d is further from the plane than e if and only if

1≥ −c d− c≥ deR Rde c≥
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which is obvious because d and e are unit vectors.
The only thing remaining to be proved is that 

C
R
 ≥ 1 or

11 111 111≤v Rv
v v

R
n

T

T

T

The right-hand side of this inequality is equal to 
1 + (n − 1)ρ, where ρ ≥ 0 is the correlation between any 
two assets, the common term in matrix R. The left-hand 
side of this inequality is the so-called Raleigh quotient 
and is never greater than λ

1
, the maximum eigenvector 

of matrix R. According to Morrison [1967]: λ
1
 = 1 + 

(n − 1)ρ. That completes the proof.

Illustration for n = 2 Uncorrelated Assets

In this case, according to Inequality (6):

1
2

0− τ
τ τ
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⎝⎜
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⎞
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⎞⎞
⎠⎠

>t
T

We can depict the result geometrically, as shown 
in Exhibit 1.

Here ,
1
2,1
2 ||||d

⎛
⎝
⎛⎛
⎝

⎞
⎠
⎞⎞
⎠ = τ

τ , is a unit vector, τ is an arbi-
trary vector of the assets’ past Sharpe ratios from the 
positive quadrant, −a e d

defe
 by definition, and 2θ is the 

angle between e and d so that cos(2θ) = ed.

We assumed that the assets’ future Sharpe ratios t = 
(t

1
, t

2
) are randomly chosen from the positive quadrant 

of a unit circle. Then the probability that risk parity 
beats tangency for two assets is easily seen geometrically 
to be

4

2

2 =

π + θ

πP2

WHEN RISK PARITY BEATS TANGENCY 
EMPIRICALLY

Consider an investor allocating between the two 
main asset classes: equities and bonds. The investor 
observes the monthly returns of both time series and 
compares three possible portfolios: the risk parity port-
folio that invests inversely proportional to each asset’s 
realized volatility, the tangency portfolio that invests in 
the portfolio that would have had the highest ex ante 
realized Sharpe ratio, and the fixed portfolio that invests 
60% in stocks and 40% in bonds. The fixed portfolio 
may also be viewed as an approximation to the equally 
weighted portfolio.

How would the investor have performed histori-
cally under each of those three possibilities? We take 
the monthly total returns of the S&P 500 Index from 
Bloomberg and the monthly total returns of the Barclays 
Capital U.S. Aggregate Bond Index from Dimensional 
Fund Advisors (DFA) Returns 2.0 software, from Feb-
ruary 1988 through October 2012.

Exhibit 2 shows these three portfolios’ 24-month 
rolling Sharpe ratios, formed using the returns from 
the previous 24-month period, and held for the sub-
sequent 24-month period. Risk parity outperformed 
both other portfolios, averaging a 0.99 Sharpe ratio. 
The tangency portfolio was the worst, averaging a 0.48 
Sharpe ratio. The fixed 60/40 portfolio averaged a 0.68 
Sharpe ratio.

The weights for the tangency portfolio f luctuate 
wildly. Exhibit 3 shows a paired histogram comparing 
the distributions of the risk parity and tangency port-
folio’s equity weighting (the f ixed 60/40 portfolio 
was always a constant 0.60). The risk parity equity 
weighting was always between 12.7% and 37.9%, 
while the tangency portfolio ranged from −8.957% 

E X H I B I T  1
Probability That Risk Parity Beats Tangency 
for Random Future Sharpe Ratios
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E X H I B I T  2
Historical Performance Comparison of Three Portfolio Construction Methods

E X H I B I T  3
Paired Histogram of Equity Weightings
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to 2.644%; the exhibit shows the clipped distribution, 
with all weights below −1 or above +1 ref lected in 
those f inal bars.

To test our theoretical framework’s implications, 
we can examine the sensitivity of the performance of 
the risk parity and tangency portfolios to the under-
lying assets’ performance. Exhibit 4 separately plots 
the Sharpe ratio of each of the two portfolios, as well 
as the excess Sharpe ratio of the risk parity portfolio over 
the tangency portfolio, relative to the Sharpe ratios of 
the stocks and bonds separately, as well as to their sum. 
We overlay the best-fit regression line and compute all 
Sharpe ratios for the same time periods, on a rolling 
10-month basis.

Consider the first column in Exhibit 4, showing the 
relationship between the portfolio Sharpe ratio and the 
stock Sharpe ratio during the same period. Counter to 
the usual intuition that tangency outperforms risk parity 
when equities outperform, we see that empirically, risk 
parity performs better when stocks perform better, while 

the performance of the tangency portfolio is essentially 
unrelated to stocks’ simultaneous performance.

Similarly, risk parity also has a higher sensitivity 
to bond performance than does tangency.

Finally, as shown earlier, the risk parity Sharpe ratio 
corresponds well with the sum of the asset Sharpe ratios, 
as can be seen in the top right graph of Exhibit 4.

Another implication of this theoretical framework 
is that risk parity would be closer than ex ante tangency 
to ex post tangency more than half of the time. Exhibit 5 
calculates the vector angle between the ex post tan-
gency portfolio weights and the risk parity and ex ante 
tangency portfolio, respectively, for 24-month periods. 
The angle with risk parity is usually lower in the time 
series graph. The table accompanying Exhibit 5 shows 
that, for periods varying from 12 months to 60 months, 
the risk parity angle is indeed always more likely to be 
lower than ex ante tangency. The average probability is 
about 70%, and the average angle discrepancy is about 
10 degrees.

E X H I B I T  4
Sharpe Ratios of Risk Parity and Tangency Portfolios Relative to Assets
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CONCLUSION

Forming risk parity portfolios does not require 
as much data and as many sophisticated tools as 
forming other portfolios, such as the tangency port-
folio embraced by standard portfolio theory. But it does 
require more data than does the equally weighted port-
folio. Yet it consistently outperforms both and lately 
has become a prominent instrument among fund man-
agers and a central topic among academic researchers. 
Risk parity may represent a heuristic sweet spot, where 
any more or any less knowledge would seem to harm 
performance.

We have described the exact parametric condi-
tions in which risk parity outperforms other portfolios, 
including tangency. This research provides mathematical 
validation for portfolio managers who choose risk parity 
under uncertainty, by formulating the exact conditions 
of those uncertainties and proving precise mathemat-
ical results about the superiority of risk parity portfolios 
under those conditions.

A P P E N D I X  A

Proof. Because we want to f ind the portfolio per-
forming best under the worst conditions, and know that 
assets’ expected values are non-negative, we can redefine 

nM∈ without loss of generality as
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Consider a zero-sum, two-player game in which player 
1 is a portfolio manager whose strategies set is A = {a

1
, …, 

a
n
}. Strategy a

i
 means investing the entire capital of $1 in asset 

i,i = 1, …, n. Player 2 is the market; its strategies set is B = 
{b

1
, …, b

n
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i
 means asset i has expected return ∈

i
 

and the rest of the assets have expected return 0. Obviously 
such a vector of assets’ expected values belong to nM∈. Let us 
define the payoff of this game as
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As a matrix game, this game has a solution V. Let
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 be the minimax mixed strategies for player 
1 and player 2, respectively. Then,
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That proves Equation (1).
The payoff of the minimax mixed strategy of player 1 

is at least V, regardless of the strategy player 2 chooses, so for 
any pure strategy b

i

 , 1, ,w V n1, ,i i ≥
*  (A-1)

Therefore,
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E X H I B I T  5
Vector Angle between Ex Post Tangency and Risk 
Parity or Ex Ante Tangency
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which means that (A-1) are equalities:

, 1, ,w
V

n1, ,i
i
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∈

*

and the value of the game is

1
1 1

1
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n
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∈
+ +�
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Similarly, analyzing the game from player 2’s point of 
view, we can prove that

, , ,
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i n, ,i
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or

1
1 1 , 1, ,
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establishing Equation (3). That finishes the proof.

A P P E N D I X  B

Proof. Introducing new variables a = (a
i
 = w

i
σ

i
, i = 1, 

…, n ), we can rewrite the Sharpe ratio as

SR
a

a Ra

T

T
=

μ
σ

Because all a
i
’s are non-negative, the Sharpe ratio 

achieves its smallest possible value when the numerator is as 
small as possible and the denominator is as large as possible:

1111
min ( , , )

1, 1
w, ,

a

a DaM R1, R

T

T
μ σ,, =∈

μ∈ ∈

where D is a correlation matrix with all correlations outside 
the main diagonal equal to δ.

To finish our proof, we need the following statement: if 
the Sharpe ratios of all assets are equal and their correlations 
are all equal, then the risk parity portfolio is the tangency 
portfolio. Maillard et al. [2010] proved this statement. Kaya 
and Lee [2012] offered a different proof. We provide yet 
another, simpler proof.

We know that the weights of the tangency portfolio 
are proportional to D−11. In order to prove that this portfolio 
is the risk parity portfolio, we must show is that D−11 is a 
product of a constant times 1. If correlations are equal, row 
sums of D are equal,

1111D k1111

for some constant k. Thus 1 = kD−11, which proves 
the result.

Actually, because ours is a portfolio without short sales, 
we needed a slightly different statement: if the Sharpe ratios 
of all assets are equal and positive and their correlations are 
all equal and greater than zero, then the risk parity port-
folio is the portfolio with the highest Sharpe ratio among all 
portfolios without short sales, and is equal to the tangency 
portfolio. The proof is similar to the previous statement; we 
simply add that, because correlations are positive, the constant 
k is positive. This means that the tangency portfolio has all 
weights positive, which confirms that it is a portfolio without 
short sales.

A P P E N D I X  C

Proof. In the worst case, we have
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function:
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The optimal weights w* for which this function achieves 
its maximum is the same vector on which the following func-
tion achieves its minimum:
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The last inequality holds because
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And therefore,
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which shows that w* is in fact the value for which function 
f(w) achieves its maximum.

ENDNOTE

1Normally, the optimality result is attributed to 
Markowitz or Sharpe. However, the founding papers of 
modern portfolio theory, Markowitz [1952] and Sharpe 
[1966], don’t have this result, while Roy [1952] does. See 
some discussion of Roy’s forgotten contribution in Sullivan 
[2011]. Markowitz [1952] appears to be the f irst to sug-
gest evaluating portfolios by the relationship between their 
expected returns and their variances and to develop the con-
cept of efficient portfolios.
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