Entangling power of permutation-invariant quantum states

Vladislav Popkov, Mario Salerno, Gunter Schütz
2005 Physical Review A. Atomic, Molecular, and Optical Physics  
We investigate the von Neumann entanglement entropy as function of the size of a subsystem for permutation invariant ground states in models with finite number of states per site, e.g., in quantum spin models. We demonstrate that the entanglement entropy of $n$ sites in a system of length $L$ generically grows as $\sigma\log_{2}[2\pi en(L-n)/L]+C$, where $\sigma$ is the on-site spin and $C$ is a function depending only on magnetization.
doi:10.1103/physreva.72.032327 fatcat:x7p2sdznp5aehnp2b3wsdghhha