A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Cervical Cancer Diagnosis Using an Integrated System of Principal Component Analysis, Genetic Algorithm, and Multilayer Perceptron
2022
Healthcare
Cervical cancer is one of the most dangerous diseases that affect women worldwide. The diagnosis of cervical cancer is challenging, costly, and time-consuming. Existing literature has focused on traditional machine learning techniques and deep learning to identify and predict cervical cancer. This research proposes an integrated system of Genetic Algorithm (GA), Multilayer Perceptron (MLP), and Principal Component Analysis (PCA) that accurately predicts cervical cancer. GA is used to optimize
doi:10.3390/healthcare10102002
fatcat:vnqq5cfg3jeupohycrzbxyiwzq