Generation of Data-Driven Expected Energy Models for Photovoltaic Systems

Michael W. Hopwood, Thushara Gunda
2022 Applied Sciences  
Although unique expected energy models can be generated for a given photovoltaic (PV) site, a standardized model is also needed to facilitate performance comparisons across fleets. Current standardized expected energy models for PV work well with sparse data, but they have demonstrated significant over-estimations, which impacts accurate diagnoses of field operations and maintenance issues. This research addresses this issue by using machine learning to develop a data-driven expected energy
more » ... l that can more accurately generate inferences for energy production of PV systems. Irradiance and system capacity information was used from 172 sites across the United States to train a series of models using Lasso linear regression. The trained models generally perform better than the commonly used expected energy model from international standard (IEC 61724-1), with the two highest performing models ranging in model complexity from a third-order polynomial with 10 parameters (Radj2 = 0.994) to a simpler, second-order polynomial with 4 parameters (Radj2=0.993), the latter of which is subject to further evaluation. Subsequently, the trained models provide a more robust basis for identifying potential energy anomalies for operations and maintenance activities as well as informing planning-related financial assessments. We conclude with directions for future research, such as using splines to improve model continuity and better capture systems with low (≤1000 kW DC) capacity.
doi:10.3390/app12041872 fatcat:ffjymbg7jbgahaep55z3vgmbhi