Converting of Matter to Energy by AB-Generator and Photon Rocket

Alexander Bolonkin
2009 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit   unpublished
Author offers a new nuclear generator which allows to convert any matter to nuclear energy in accordance with the Einstein equation E=mc 2 . The method is based upon tapping the energy potential of a Micro Black Hole (MBH) and the Hawking radiation created by this MBH. As is well-known, the vacuum continuously produces virtual pairs of particles and antiparticles, in particular, the photons and anti-photons. The MBH event horizon allows separating them. Anti-photons can be moved to the MBH and
more » ... ved to the MBH and be annihilated; decreasing the mass of the MBH, the resulting photons leave the MBH neighborhood as Hawking radiation. The offered nuclear generator (named by author as AB-Generator) utilizes the Hawking radiation and injects the matter into MBH and keeps MBH in a stable state with near-constant mass. The AB-Generator can produce gigantic energy outputs and should be cheaper than a conventional electric station by a factor of hundreds of times. One also may be used in aerospace as a photon rocket or as a power source for many vehicles. Many scientists expect the Large Hadron Collider at CERN will produce one MBH every second. A technology to capture them may follow; than they may be used for the AB-Generator. ------------- Introduction Black hole. In general relativity, a black hole is a region of space in which the gravitational field is so powerful that nothing, including light, can escape its pull. The black hole has a one-way surface, called the event horizon, into which objects can fall, but out of which nothing can come out. It is called "black" because it absorbs all the light that hits it, reflecting nothing, just like a perfect blackbody in thermodynamics. Despite its invisible interior, a black hole can reveal its presence through interaction with other matter. A black hole can be inferred by tracking the movement of a group of stars that orbit a region in space which looks empty. Alternatively, one can see gas falling into a relatively small black hole, from a companion star. This gas spirals inward, heating up to very high temperature and emitting large amounts of radiation that can be detected from earthbound and earth-orbiting telescopes. Such observations have resulted in the general scientific consensus that, barring a breakdown in our understanding of nature, black holes do exist in our universe. It is impossible to directly observe a black hole. However, it is possible to infer its presence by its gravitational action on the surrounding environment, particularly with microquasars and active galactic nuclei, where material falling into a nearby black hole is significantly heated and emits a large amount of X-ray radiation. This observation method allows astronomers to detect their existence. The only objects that agree with these observations and are consistent within the framework of general relativity are black holes. A black hole has only three independent physical properties: mass, charge and angular momentum. In astronomy black holes are classed as:  Supermassive -contain hundreds of thousands to billions of solar masses and are thought to exist in the center of most galaxies, including the Milky Way.  Intermediate -contain thousands of solar masses.  Micro (also mini black holes) -have masses much less than that of a star. At these sizes, quantum mechanics is expected to take effect. There is no known mechanism for them to form via normal processes of stellar evolution, but certain inflationary scenarios predict their production during the early stages of the evolution of the universe. According to some theories of quantum gravity they may also be produced in the highly energetic reaction produced by cosmic rays hitting the atmosphere or even in particle accelerators such as the Large Hadron Collider. The theory of Hawking radiation predicts that such black holes will evaporate in bright flashes of gamma radiation. NASA's Fermi Gamma-ray Space Telescope satellite (formerly GLAST) launched in 2008 is searching for such flashes.
doi:10.2514/6.2009-5342 fatcat:cwuhcjejzrbrvnxus4cwuubblm