A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit the original URL.
The file type is application/pdf
.
Wrangling categorical data in R
[post]
2017
unpublished
Data wrangling is a critical foundation of data science, and wrangling of categorical data is an important component of this process. However, categorical data can introduce unique issues in data wrangling, particularly in real-world settings with collaborators and periodically-updated dynamic data. This paper discusses common problems arising from categorical variable transformations in R, demonstrates the use of factors, and suggests approaches to address data wrangling challenges. For each
doi:10.7287/peerj.preprints.3163v1
fatcat:sdq3mivtpvfyhfdafgl6nhw7ny