Covariate Shift Adaptation for Discriminative 3D Pose Estimation

Makoto Yamada, Leonid Sigal, Michalis Raptis
2014 IEEE Transactions on Pattern Analysis and Machine Intelligence  
Discriminative, or (structured) prediction, methods have proved effective for variety of problems in computer vision; a notable example is 3D monocular pose estimation. All methods to date, however, relied on an assumption that training (source) and test (target) data come from the same underlying joint distribution. In many real cases, including standard datasets, this assumption is flawed. In presence of training set bias, the learning results in a biased model whose performance degrades on
more » ... mance degrades on the (target) test set. Under the assumption of covariate shift we propose an unsupervised domain adaptation approach to address this problem. The approach takes the form of training instance re-weighting, where the weights are assigned based on the ratio of training and test marginals evaluated at the samples. Learning with the resulting weighted training samples, alleviates the bias in the learned models. We show the efficacy of our approach by proposing weighted variants of Kernel Regression (KR) and Twin Gaussian Processes (TGP). We show that our weighted variants outperform their un-weighted counterparts and improve on the state-of-the-art performance in the public (HUMANEVA) dataset. Index Terms-3D pose estimation, covariate shift adaptation, importance weight estimation, twin Gaussian processes. ! • M. Yamada is with the
doi:10.1109/tpami.2013.123 pmid:24356346 fatcat:2muodcw7rvcmvbeebs4yiphree