Estimating effective connectivity in linear brain network models [article]

Giulia Prando, Mattia Zorzi, Alessandra Bertoldo, Alessandro Chiuso
<span title="2017-03-30">2017</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
Contemporary neuroscience has embraced network science to study the complex and self-organized structure of the human brain; one of the main outstanding issues is that of inferring from measure data, chiefly functional Magnetic Resonance Imaging (fMRI), the so-called effective connectivity in brain networks, that is the existing interactions among neuronal populations. This inverse problem is complicated by the fact that the BOLD (Blood Oxygenation Level Dependent) signal measured by fMRI
more &raquo; ... ent a dynamic and nonlinear transformation (the hemodynamic response) of neuronal activity. In this paper, we consider resting state (rs) fMRI data; building upon a linear population model of the BOLD signal and a stochastic linear DCM model, the model parameters are estimated through an EM-type iterative procedure, which alternately estimates the neuronal activity by means of the Rauch-Tung-Striebel (RTS) smoother, updates the connections among neuronal states and refines the parameters of the hemodynamic model; sparsity in the interconnection structure is favoured using an iteratively reweighting scheme. Experimental results using rs-fMRI data are shown demonstrating the effectiveness of our approach and comparison with state of the art routines (SPM12 toolbox) is provided.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="">arXiv:1703.10363v1</a> <a target="_blank" rel="external noopener" href="">fatcat:dbzvaz2ifbazjlv7rkpr4wczwm</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="" title=" access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> </button> </a>