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Abstract. Full Eulerian methods constitute a family of numerical techniques used
to simulate fluid-structure interaction problems. In a full Eulerian method, the velocity
gradient tensor is used to compute deformation of solid. However, it is difficult to com-
pute solid stress accurately near the interface, where the velocity between fluid and solid
changes drastically. In this work, we propose an Eulerian formulation for fluid-structure
interaction problems using Lagrangian marker particles with the Reference Map Technique
to compute the deformation of solid accurately near material interfaces without using the
gradient of the velocity. We illustrate and validate the proposed method through the
presentation of various benchmark problems.
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1 INTRODUCTION

Full Eulerian methods[1, 2, 3] using a fixed mesh to compute motions of fluids and solids
have been developed to solve fluid-structure interaction (FSI) problems. These methods
are suitable for high-performance computing and computing large deformation of solids.
In these methods, color functions like the volume-of-fluid (VOF) method[4] are used to
express spatial distribution and shape of materials. Moreover, advection equations are
used to compute not only color functions but also internal variables of solid. However,
the numerical dissipation of color functions and internal variables of solid is unavoidable
due to solving the advection equations in the Eulerian way[3].

We have introduced Lagrangian marker particles into the full Eulerian FSI formulation
proposed by Nishiguchi et al.[3] to avoid solving advection equations[5]. In this method,
Lagrangian marker particles represent solid regions and have internal variables of solids.
We have confirmed our method obtains better accuracy results than results by the con-
ventional Eulerian method. However, it is difficult to compute solid stress accurately
near the interface with our method, when the velocity near the interface between fluid
and solid changes drastically. The reason is that the velocity gradient tensor is used to
compute solid stress in our method.

The Reference Map Technique (RMT)[6] is one of the methods to compute solid stress
with a full Eulerian method. In the RMT, the Reference Map which means the spatial
distribution of the initial position vector (the position vector of the reference configura-
tion) of solid is used to compute the deformation gradient tensor of solid. Thus the RMT
can overcome the problem about the computation of solid stress near the interface due to
using a velocity gradient tensor. However, in the original RMT[6], the advection equation
is solved to update the Reference Map in the Eulerian manner. In short, the numerical
dissipation of the Reference Map is unavoidable.

From these backgrounds, we propose an Eulerian formulation for fluid-structure inter-
action problems using Lagrangian marker particles with the Reference Map Technique
to compute solid stress accurately without using the advection equation of the Reference
map. We have confirmed that the proposed method overcomes the problem mentioned
above. We explain our proposed method in this paper, but we are going to show the
results of benchmark tests in the presentation.

2 BASIC EQUATIONS

2.1 Mixture equations

In this research, the incompressible mixture equations[1, 2, 3] shown below are used to
compute the motion of incompressible fluids and incompressible solids.

∇ · vmix = 0 (1)

∂ρmixvmix

∂t
+∇ · (ρmixvmix ⊗ vmix) = ∇ · σmix + ρmixb (2)
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Equation (1) is the mixture equation of continuity and equation (2) is the mixture equation
of motion. In these equations, vmix means the mixture velocity, ρmix means the mixture
density, σmix means the mixture stress, and b is the body force. The single velocity field
and pressure field are computed with these equations. In short, the velocity and pressure
of each material are not obtained.

2.2 Constitutive equations

In this research, in order to compare the results of the benchmark problems by Zhao
et al.[7] and by Nishiguchi et al.[3] with the result by the proposed method we use the
same constitutive equations in their papers.

The constitutive equation of the fluid is an incompressible Newtonian fluid,

σ = 2µD − pI, (3)

where, µ is the viscosity, D is the deformation rate tensor, p is the pressure, and I is the
second-order unit tensor.

The constitutive equation of the solid is an incompressible neo-Hookean solid with
viscosity,

σ = G (B − I) + 2µD − pI. (4)

Here, G is the shear modulus, B is the left Cauchy-Green deformation tensor, I is the
second-order unit tensor µ is the viscosity, D is the deformation rate tensor, and p is the
pressure．The left Cauchy-Green deformation tensor B is given by

B = F · F T , (5)

where, F is the deformation gradient tensor. The deformation gradient tensor is defined
as

F =
∂x

∂X
. (6)

Here, x is the position vector of the current configuration and X is the position vector of
the reference configuration.

3 NUMERICAL METHOD

Following our previous method[5], the governing equations and spatial differentials are
solved on an Eulerian mesh and the physical quantities of solid are calculated and carried
on Lagrangian marker particles in our proposed method in this paper.

The difference between the method in our previous paper and the proposed method is
in the evaluation method of the left Cauchy green deformation tensor. In our previous
method[5], the time evolution equation of the left Cauchy–Green deformation tensor is
calculated on Lagrangian marker particles using the velocity gradient tensor calculated on
the Eulerian mesh. However, in the proposed method, the deformation gradient tensor is
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obtained on a Euler grid using the Reference Map Technique[6], and then the left Cauchy-
Green deformation tensor is computed. In the proposed method, instead of solving the
advection equation of the Reference Map, Lagrangian marker particles carry the Reference
Map to prevent the numerical dissipation of the Reference Map.

Based on our previous method[3, 5], the finite volume method and the fractional step
method[8] was used to solve the governing equations (1,2) on the Eulerian mesh. The
mixture velocity and pressure are computed at cell centers of the Eulerian mesh by a
collocated variable arrangement, and density and volume fraction are also defined at the
cell centers. The deviation stress of an incompressible neo-Hooke solid is defined at cell
faces of the Eulerian mesh, while the deviation stress of the viscosity of a fluid and a solid
is defined at the cell centers. In addition, the Reference Map X and the deformation
gradient tensor F are defined at the cell centers.

Compute intermediate velocity

Solve pressure Poisson equation

Compute 𝑭!" =
#𝑿

#𝒙
and 𝑭 =

#𝒙

#𝑿

Interpolate deviatoric stress tensor to cell face 

On Eulerian mesh

Interpolate velocity vector from cell center for update position 

of Lagrangian marker particles

Interpolate 𝑭 from cell center and compute left Cauchy Green 

deformation tensor

Spread Reference Map to cell center
Solve velocity correction equation

Update position of Lagrangian marker particles

Update VOF information

with using Lagrangian marker particles

On Lagrangian marker particles

Figure 1: Computational flowchart of the proposed method

3.1 Computation of intermediate velocity

As described above, to solve the governing equation with the fractional step method,
the intermediate velocity v∗

mix is calculated based on the following equation.

ρnmix

v∗
mix − vn

mix

∆t
+∇ · (ρmixvmix ⊗ vmix) = ∇ · σ′

mix + ρmixb (7)

In this study, the second-order Adams-Bashforth method is used for the time integration
scheme of the advection term and stress term and the second-order central difference
scheme is used for the spatial discretization scheme of the advection term.
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3.2 Computation of pressure Poisson equation

Next, the pressure pn+1 at the next time step (n+1) is obtained by solving the following
pressure Poisson equation using the intermediate velocity v∗

mix.

∇ · v∗
mix

∆t
= ∇ ·

(

1

ρnmix

∇pn+1

)

(8)

Equation (8) is discretized with the second-order central difference scheme. The dis-
cretized equation is solved using the successive overrelaxation method color-coded by red
and black ordering[9]. It is known that a collocated variable arrangement cannot avoid
checkerboard pressure instability occurs because a pressure difference between adjacent
cells cannot be evaluated. Thus, in this study, the Rhie-Chow method[10] is used to
refrain from the pressure instability.

3.3 Computation of velocity correction equation

Finally, the velocity vn+1
mix at the next time step (n + 1) is obtained by solving the

velocity correction equation which is given by

vn+1
mix = v∗

mix −
∆t

ρnmix

∇pn+1. (9)

The pressure gradient ∇pn+1 in equation (9) is discretized with the second-order central
difference scheme.

3.4 Interpolation of velocity vector to Lagrangian marker particles

The velocity of Lagrangian marker particles vLag which is necessary for calculating
their motion is interpolated from the cell centers.

3.5 Update position of Lagrangian marker particles

The position of each Lagrangian marker particle in the next step xn+1
Lag is discretized

with the second-order Adams-Bashforth method and given by

xn+1
Lag = xn

Lag +∆t

(

3

2
vn
Lag −

1

2
vn−1
Lag

)

. (10)

3.6 Interpolation Reference Map to Eulerian mesh

The Reference Map is interpolated from the Lagrangian marker particles to the cell
centers. Since the Reference Map is the position vector of the reference configuration of
solid, the position vector at the initial computational step is uniquely assigned to each
Lagrangian marker particle.
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3.7 Computation of deformation gradient tensor

Using the Reference Map value X interpolated to the cell centers, the inverse tensor
of the deformation F−1 gradient tensor is obtained as follows.

F−1 =
∂X

∂x
(11)

In our method, the inverse of the deformation gradient tensor is defined at the cell centers
and calculated using the second-order central difference. Finally, the deformation gradient
tensor at the cell centers F is obtained by calculating the inverse of F−1 obtained by the
above equation (11).

3.8 Interpolation of deformation gradient tensor

The deformation gradient tensor F computed on the cell centers is interpolated to the
Lagrangian marker particles.

3.9 Computation of solid deviation stress and interpolation to the cell face

Using the deformation gradient tensor F interpolated to the Lagrangian marker par-
ticles, the left Cauchy green deformation tensor is obtained on each Lagrangian marker
particle from equation (5). After that, the solid deviation stress of the first term on the
right hand side of equation (4) is calculated on the Lagrangian marker particles. Finally,
the deviation stress on Lagrangian marker particles are interpolated to the cell centers.

3.10 Computation of volume fraction of solids

At the end of the computation in one time step, the volume fraction of solids in each
cell is obtained by using positional relationship between Lagrangian marker particles and
each cell.

4 NUMERICAL EXAMPLES

To verify the proposed method, we conducted the numerical benchmark tests by Zhao
et al.[7] and by Nishiguchi et al.[3] The results of them are going to be shown in the
presentation.

5 CONCLUSIONS

In this paper, we proposed the Eulerian formulation method for FSI problems using the
Reference Map Technique and Lagrange marker particles to solve the problem that stress
oscillation occurs near an interface of materials. In order to confirm the effectiveness and
validity of the proposed method, the numerical benchmark tests[7] have been conducted.

6



Tokimasa shimada, Koji Nishiguchi, Christian Peco, Shigenobu Okazawa and Makoto Tsubokura

REFERENCES

[1] Sugiyama, K., Ii, S., Takeuchi, S., Takagi, S., and Matsumoto, Y. A full Eulerian
finite difference approach for solving fluid–structure coupling problems. Journal of

Computational Physics. (2011) 230-3:596–627

[2] Nishiguchi, K., Okazawa, S., and Tsubokura, M. Multimaterial Eulerian finite ele-
ment formulation for pressure-sensitive adhesives. International Journal for Numer-

ical Methods in Engineering. (2018) 114-13:1368–1388

[3] Nishiguchi, K., Bale, R., Okazawa, S., and Tsubokura, M. Full Eulerian deformable
solid-fluid interaction scheme based on building-cube method for large-scale parallel
computing. International Journal for Numerical Methods in Engineering. (2019)
117-2:221–248

[4] Hirt, C. W.and Nichols, B. D. Volume of fluid (VOF) method for the dynamics of
free boundaries. Journal of computational physics. (1981) 39-1:201–225

[5] Shimada, T., Nishiguchi, K., Bale, R., Okazawa, S., and Tsubokura, M. Eulerian
finite volume formulation using Lagrangian marker particles for incompressible fluid-
structure interaction problems. International Journal for Numerical Methods in En-

gineering. (2021) Submitted

[6] Kamrin, K., Rycroft, C. H., and Nave, J.-C. Reference map technique for finite-strain
elasticity and fluid–solid interaction. Journal of the Mechanics and Physics of Solids.
(2012) 60-11:1952–1969

[7] Zhao, H., Freund, J. B., and Moser, R. D. A fixed-mesh method for incompress-
ible flow–structure systems with finite solid deformations. Journal of Computational

Physics. (2008) 227-6:3114–3140

[8] Kim, J.and Moin, P. Application of a fractional-step method to incompressible
Navier-Stokes equations. Journal of computational physics. (1985) 59-2:308–323

[9] Yavneh, I. On red-black SOR smoothing in multigrid. SIAM Journal on Scientific

Computing. (1996) 17-1:180–192

[10] Rhie, C.and Chow, W. L. Numerical study of the turbulent flow past an airfoil with
trailing edge separation. AIAA journal. (1983) 21-11:1525–1532

7


