Can Ocean Thermal Energy Conversion and Seawater Utilisation Assist Small Island Developing States? A Case Study of Kiribati, Pacific Islands Region
[chapter]
Michael G. Petterson, Hyeon Ju Kim
2020
Ocean Thermal Energy Conversion (OTEC) - Past, Present, and Progress
The deployment of a land-based Ocean Thermal Energy Conversion (OTEC) plant in South Tarawa, Kiribati, Pacific Islands Region, in 2020/2021, represents a major technical achievement, alongside an international development opportunity. Pacific Small Island Developing States (PSIDS) are archipelago nations with small land areas and large oceanic exclusive economic zones. Geographical isolation and large transport distances make economic development a challenge. A lack of affordable and reliable
more »
... ergy in many PSIDS is a development inhibitor. PSIDS are situated within the areas of highest ocean thermal potential in the world. Temperature differences between surface and 1 km depth waters, are in excess of 24°C. Regional geology and tectonics allow access to deeper, colder, waters within few kilometres of many shorelines, and close to market. Seawater Utilization technologies can catalyse varied industrial development (e.g., fresh water/aquaculture/agriculture/mineral salts). The KRISO (Korean Research Institute of Ships and Ocean Engineering)-Government of Kiribati OTEC partnership is already 7 years old (2013-2020) and has involved extensive negotiations, awareness raising programmes, and inclusive collaboration. The project will test OTEC technologies and explore a range development opportunities for Kiribati. The programme could become a role model for the application of the concept of 'Interconnected Geoscience'. Keywords: ocean thermal energy conversion, OTEC, international development, Kiribati, green energy, Pacific an old technology taken so long to be realised on a large scale?" and "why deploy at this time within a Pacific Islands context?" There are a number of potential replies to the first question. Many technological ideas and inventions do not end up as large-scale commercial successes. There may be long incubation periods for some technologies before their application need becomes apparent, or the technology may not allow development on a large or mass-produced scale until scientific advances occur. The idea of space travel or mobile communication devices, for example, was common in science fiction, long before they were technologically realised. With respect to energy, there has been, and remains, an abundance of hydrocarbon energy, with oil in particular, being highly transportable and flexible as an energy source. The advent of climate change and global warming social and political movements, particularly since the 2015 COP 21 meeting in Paris, France [1], are heralding the gradual demise of fossil fuels and the rise of less polluting renewable energies. This change in thinking, policy, and economics has allowed OTEC to become, again, a renewable energy source that may, finally, come of age. Technical and commercialisation challenges remain for OTEC, particularly in the sphere of large (100 MW plus) fully ocean-deployed energy platform development, and this will impede progress for some time to come. Only small (<1 MW) land-based, ocean-adjacent, OTEC systems have been developed thus far, as experimental plants or provision of small-scale energy, drinking water, agriculture/aquaculture, or space heating/cooling units in places such as France, Hawaii, India, Mexico, and South Korea. There remains a wide gap between commercialisation need (for large electricity generation plants) and current OTEC technical capabilities. The second question may, at first, appear cryptic, but does, on analysis, make a degree of logical sense. Why, from all the world's markets would an advanced country such as South Korea choose a small Pacific atoll island nation to be the target of, potentially, the world's first-ever 1 MW OTEC plant? Why not China, the USA, Canada, South America, or the European Union? One answer is scale. Large developed countries, or even medium-sized emerging countries, require far more electricity than a small OTEC plant can provide. Then there is geography. An OTEC plant requires oceanic temperature conditions that are only met year-round, in tropical and subtropical waters. So SIDS and Pacific SIDS (PSIDS), from the viewpoint of this paper, start to become appealing. Many PSIDS are surrounded by enormous ocean energy potentials (if only the energy can be tapped) and geological/topographic conditions that allow for rapid access to deeper, cold water, alongside the warmest ocean surface temperatures in the world. PSIDS in particular have underdeveloped electricity generation and supply infrastructure, much of which is old, expensive, inefficient, unreliable, and dependent on imported oil. Total electricity demand for the smaller PSIDS is low, between 5 and 20 MW. Therefore, the development of even a 1 MW OTEC plant within a small PSIDS can add significant amounts of energy to the grid, reduce reliance on imported oil, generate new skills and employment opportunities, and have additional benefits in the area of drinking water provision, refrigeration/air conditioning, agriculture, aquaculture, and, even, mineral salt/cosmetic manufacture. In theory, there are many development 'wins' for the deployment of OTEC within a small PSIDS. Alongside the concept of OTEC is the concept of seawater utilisation, which describes the manifold applications of seawater such as in the fields of aquaculture, agriculture, and mineral salt and cosmetic manufacture. Deep seawater has a number of characteristics that make it useful, such as a lack of potentially harmful pollutants and organic substances and a chemical composition that promotes aspects of human health. This paper will examine a number of aspects of OTEC deployment within the Pacific Islands region, particularly focusing upon the 1-year period deployment and
doi:10.5772/intechopen.91945
fatcat:m6pftujnznbt7cyo2u2tyxi7li