Resistance of L. monocytogenes and S. Typhimurium towards Cold Atmospheric Plasma as Function of Biofilm Age

Marlies Govaert, Cindy Smet, Maria Baka, Branimir Ećimović, James L. Walsh, Jan Van Impe
2018 Applied Sciences  
The biofilm mode of growth protects bacterial cells against currently applied disinfection methods for abiotic (food) contact surfaces. Therefore, innovative methods, such as Cold Atmospheric Plasma (CAP), should be investigated for biofilm inactivation. However, more knowledge is required concerning the influence of the biofilm age on the inactivation efficacy in order to comment on a possible application of CAP in the (food) processing industry. L. monocytogenes and S. Typhimurium biofilms
more » ... h five different ages (i.e., 1, 2, 3, 7, and 10 days) were developed. For the untreated biofilms, the total biofilm mass and the cell density were determined. To investigate the biofilm resistance towards CAP treatment, biofilms with different ages were treated for 10 min and the remaining cell density was determined. Finally, for the one-day old reference biofilms and the most resistant biofilm age, complete inactivation curves were developed to examine the influence of the biofilm age on the inactivation kinetics. For L. monocytogenes, an increased biofilm age resulted in (i) an increased biomass, (ii) a decreased cell density prior to CAP treatment, and (iii) an increased resistance towards CAP treatment. For S. Typhimurium, similar results were obtained, except for the biomass, which was here independent of the biofilm age.
doi:10.3390/app8122702 fatcat:7fom2lh4mzhqxiwhhcyeh32q64