Dimensional reduction analysis for Physical Layer device fingerprints with application to ZigBee and Z-Wave devices

Trevor J. Bihl, Kenneth W. Bauer, Michael A. Temple, Benjamin Ramsey
2015 MILCOM 2015 - 2015 IEEE Military Communications Conference  
Radio Frequency RF Distinct Native Attribute (RF-DNA) Fingerprinting is a PHY-based security method that enhances device identification (ID). ZigBee 802.15.4 security is of interest here given its widespread deployment in Critical Infrastructure (CI) applications. RF-DNA features can be numerous, correlated, and noisy. Feature Dimensional Reduction Analysis (DRA) is considered here with a goal of: 1) selecting appropriate features (feature selection) and 2) selecting the appropriate number of
more » ... atures (dimensionality assessment). Five selection methods are considered based on Generalized Relevance Learning Vector Quantization-Improved (GRLVQI) feature relevance ranking, and p-value and test statistic rankings from both the two-sample Kolmogorov-Smirnov (KS) Test and the one-way Analysis of Variance (ANOVA) F-test. Dimensionality assessment is considered using previous qualitative (subjective) methods and quantitative methods developed herein using data covariance matrices and the KS and F-test p-values. ZigBee discrimination (classification and ID verification) is evaluated under varying signal-to-noise ratio (SNR) conditions for both authorized and unauthorized rogue devices. Test statistic approaches emerge as superior to p-value approaches and offer both higher resolution in selecting features and generally better device discrimination. With appropriate feature selection, using only 16% of the data is shown to achieve better classification performance than when using all of the data. Preliminary firstlook results for Z-Wave devices are also presented and shown to be consistent with ZigBee device fingerprinting performance.
doi:10.1109/milcom.2015.7357469 dblp:conf/milcom/BihlBTR15 fatcat:xrbczgvy5vgpfhrq5oeakywo2y