Characterization of the human and mouse genes encoding the tuberoinfundibular peptide of 39 residues, a ligand of the parathyroid hormone receptor family

I. Hansen
2002 Journal of Endocrinology  
The polypeptide TIP39 (tuberoinfundibular peptide of 39 residues) is a potent activator of the parathyroid hormone (PTH)-2 receptor (P2R) and an antagonist of the PTH-1 receptor (P1R). To clarify its possible physiological function(s), we studied its interaction with the human P1R and P2R and examined the expression of TIP39 in man and mouse. To find out possible sites of this ligand interaction in the organism, we identified the genes encoding the TIP39 protein precursors of Homo sapiens and
more » ... Homo sapiens and Mus musculus in the databases of the human and mouse genome projects respectively. We then obtained the full-length cDNAs of both species by RACE-PCR. The deduced TIP39 preprohormones consist of an N-terminal 30 amino acid (aa) signal peptide followed by a 29 aa TIP39 precursor-related peptide, an Arg-Arg processing site, and the actual 39 aa TIP39 sequence. The first 23 aa of the actual TIP39 sequence, thought to contain the P2R receptor activation site, are identical in man and mouse and thus phylogenetically conserved. By contrast, the 16 aa C-terminal portion showed a higher degree of diversity (75% aa identity). By using RT-PCR, TIP39 was found to be highly expressed in human central nervous system tissues, trachea, fetal liver, and, to a lesser degree, in human heart and kidney. Using in situ hybridization, TIP39 mRNA expression was revealed in various areas of the mouse brain. In a homologous human cell model using human embryonic kidney 293 cells stably transfected with human P1R and P2R, human TIP39 did bind to P1R with moderate affinity (IC 50 10 7 -10 6 M), but showed higher affinity binding to P2R (IC 50 10 8 M), comparable to the affinity of human N-terminal PTH (hPTH(1-34)) to this receptor. In P2R-transfected cells, the cAMP pathway was activated more efficiently (10fold) by TIP39 as a ligand compared to hPTH(1-34). In P1R-transfected cells, only hPTH(1-34) but not TIP39 was able to elicit a cAMP response, but TIP39 was able to directly antagonize the cAMP-stimulating effect of hPTH(1-34) on this receptor. In conclusion, we could show a possible function of TIP39 for the human organism as a potent activator of P2R (e.g. in brain) as well as an antagonist of the action of PTH and/or PTH-related protein on P1R (e.g. in bone and kidney). The physiological role of TIP39 in calcium metabolism with regard to these actions remains to be determined. The tools developed in this work will allow us to investigate the possible role of TIP39 as a locally or systemically secreted ligand modulating the function of the PTH receptor family.
doi:10.1677/joe.0.1740095 pmid:12098667 fatcat:hl4mlxeexnhz7ps5pknsd4o32u