Early structural connectivity within the sensorimotor network: deviations related to prematurity and association to neurodevelopmental outcome [article]

Neumane Sara, Gondova Andrea, Leprince Yann, Hertz-Pannier Lucie, Arichi Tomoki, Dubois Jessica
2022 bioRxiv   pre-print
AbstractThe sensorimotor (SM) network is crucial for optimal neurodevelopment. However, undergoing rapid maturation during the perinatal period, it is particularly vulnerable to preterm birth.Our work explores the prematurity impact on the microstructure and maturation of primary SM white matter (WM) tracts at term-equivalent age (TEA) and evaluates the relationships between these alterations and neurodevelopmental outcome.We analyzed diffusion MRI data from the developing Human Connectome
more » ... ct (dHCP) database: 59 preterm (PT) low-risk infants scanned near TEA, compared to a control group of full-term (FT) neonates paired for age at MRI and sex. We dissected pairwise connections between primary SM cortices and subcortical structures using probabilistic tractography and evaluated their microstructure with diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) models. In addition to tract- specific univariate analyses of diffusion metrics, we computed a maturational distance related to prematurity based on a multi-parametric Mahalanobis distance of each PT infant relative to the FT group. Finally, we evaluated the relationships between this distance and Bayley Scales of Infant and Toddler Development (BSID-III) scaled scores at 18 months corrected age.Our results confirm important microstructural differences in SM tracts between PT and FT infants, with effects increasing with lower gestational age at birth. Additionally, comparisons of maturational distances highlight that prematurity has a differential effect on SM tracts which follows the established WM caudo-rostral developmental pattern. Our results suggest a particular vulnerability of projections involving the primary sensorimotor cortices (S1) and of the most rostral tracts, with cortico-cortical and S1-Lenticular tracts presenting the highest alterations at TEA. Finally, NODDI-derived maturational distances of specific tracts seem related to fine motor and cognitive scores.This study expands the understanding of the impact of early WM alterations in the emerging SM network on long-term neurodevelopment. In the future, related approaches have potential to lead to the development of neuroimaging markers for neurodevelopmental disorders, with special interest for subtle neuromotor impairments frequently observed in preterm-born children.
doi:10.1101/2022.05.04.490626 fatcat:6sq33c47rfdgbdj4xiifmg7suq