Brain connectivity in autism spectrum disorder

Iman Mohammad-Rezazadeh, Joel Frohlich, Sandra K. Loo, Shafali S. Jeste
2016 Current Opinion in Neurology  
Many studies have reported that individuals with autism spectrum disorder (ASD) have different brain connectivity patterns compared with typically developing individuals. However, the results of more recent studies do not unanimously support the traditional view in which individuals with ASD have lower connectivity between distant brain regions and increased connectivity within local brain regions. In this review, we discuss different methods for measuring brain connectivity and how the
more » ... ship provides open access, scholarly publishing services to the University of California and delivers a dynamic research platform to scholars worldwide. use of different metrics may contribute to the lack of convergence of investigations of connectivity in ASD.The discrepancy in brain connectivity results across studies may be due to important methodological factors, such as the connectivity measure applied, the age of patients studied, the brain region(s) examined, and the time interval and frequency band(s) in which connectivity was analyzed.We conclude that more sophisticated electroencephalography analytic approaches should be utilized to more accurately infer causation and directionality of information transfer between brain regions, which may show dynamic changes of functional connectivity in the brain. Moreover, further investigations of connectivity with respect to behavior and clinical phenotype are needed to probe underlying brain networks implicated in core deficits of ASD. Purpose of review Many studies have reported that individuals with autism spectrum disorder (ASD) have different brain connectivity patterns compared with typically developing individuals. However, the results of more recent studies do not unanimously support the traditional view in which individuals with ASD have lower connectivity between distant brain regions and increased connectivity within local brain regions. In this review, we discuss different methods for measuring brain connectivity and how the use of different metrics may contribute to the lack of convergence of investigations of connectivity in ASD. Recent findings The discrepancy in brain connectivity results across studies may be due to important methodological factors, such as the connectivity measure applied, the age of patients studied, the brain region(s) examined, and the time interval and frequency band(s) in which connectivity was analyzed. Summary We conclude that more sophisticated electroencephalography analytic approaches should be utilized to more accurately infer causation and directionality of information transfer between brain regions, which may show dynamic changes of functional connectivity in the brain. Moreover, further investigations of connectivity with respect to behavior and clinical phenotype are needed to probe underlying brain networks implicated in core deficits of ASD.
doi:10.1097/wco.0000000000000301 pmid:26910484 pmcid:PMC4843767 fatcat:kbrcsxm77vejdfe33desjborr4