On an inverse problem for anisotropic conductivity in the plane

Gennadi Henkin, Matteo Santacesaria
2010 Inverse Problems  
Let Ω̂⊂ R^2 be a bounded domain with smooth boundary and σ̂ a smooth anisotropic conductivity on Ω̂. Starting from the Dirichlet-to-Neumann operator Λ_σ̂ on ∂Ω̂, we give an explicit procedure to find a unique domain Ω, an isotropic conductivity σ on Ω and the boundary values of a quasiconformal diffeomorphism F:Ω̂→Ω which transforms σ̂ into σ.
doi:10.1088/0266-5611/26/9/095011 fatcat:vrtczpypmrfhlfnqzjrx632zwy