Subthreshold Transpupillary Thermotherapy Reduces Experimental Choroidal Neovascularization in the Mouse without Collateral Damage to the Neural Retina

Yue Ming, Peep V. Algvere, Anne Odergren, Lennart Berglin, Ingeborg van der Ploeg, Stefan Seregard, Anders Kvanta
2004 Investigative Ophthalmology and Visual Science  
PURPOSE. Transpupillary thermotherapy (TTT) is currently being evaluated for treatment of choroidal neovascularization (CNV) in age-related macular degeneration. To optimize TTT for CNV, the effect was analyzed of invisible (subthreshold) or visible (threshold) doses of TTT on the normal mouse retina and on experimental CNV. METHODS. TTT was delivered to the normal retina of 42 mice with a diode laser at increasing power settings (50, 60, 70, or 80 mW), to obtain thermal lesions ranging from
more » ... isible (subthreshold) to visible (threshold) burns. CNV was induced in 53 mice by krypton laser photocoagulation of the fundus, after which the CNV lesions were treated with TTT (50, 60, or 80 mW). Eyes were enucleated 7 days after TTT and prepared for histology, and the CNV complex was evaluated on hematoxylin-eosin stained serial sections by measuring the maximum height of the CNV lesions. Ultrastructural changes were examined by transmission electron microscopy. RESULTS. Increasing the TTT laser power yielded gradually more visible effects. At 50 mW, which induced subthreshold burns, no damage was seen in the neural retina, retinal pigment epithelium (RPE), or choroid at any time point. By contrast, eyes treated with higher power exhibited progressively more damage to the neural retina, including a complete disruption of the outer nuclear layer. When TTT was applied to the laserinduced CNV lesions, the height of lesions was significantly reduced (P Ͻ 0.001) in response to all three power settings at 7 days after treatment. The mean relative thickness of the CNV lesion was 3.29 Ϯ 0.89 in untreated mice, whereas in TTTtreated mice it was 1.69 Ϯ 0.35, 1.69 Ϯ 0.41 and 1.70 Ϯ 0.17 at power settings of 50, 60, and 80 mW, respectively. The overlying neural retina showed no apparent damage with the 50-or 60-mW settings, whereas outer nuclear layer disruption occurred with a power of 80 mW. Electron microscopy confirmed the presence of vascular occlusion at 1 day and a fibrotic scar at 7 days after TTT. CONCLUSIONS. Subthreshold TTT can effectively occlude newly formed vessels and cause regression of the experimental CNV complex without damaging the neural retina. The results demonstrate the importance of using subthreshold laser power in experimental and clinical evaluation of TTT. (Invest Ophthalmol Vis Sci.
doi:10.1167/iovs.03-1329 pmid:15161865 fatcat:x5g6hzaypnby3kz7ev2wxtdij4