A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2016; you can also visit the original URL.
The file type is `application/pdf`

.

##
###
Approximate Shortest Descent Path on a Terrain

2007
*
Canadian Conference on Computational Geometry
*

A path from a point s to a point t on the surface of a polyhedral terrain is said to be descent if for every pair of points p = (x(p), y(p), z(p)) and q = (x(q), y(q), z(q)) on the path, if dist(s, p) < dist(s, q) then z(p) ≥ z(q), where dist(s, p) denotes the distance of p from s along the aforesaid path. Although an efficient algorithm to decide if there is a descending path between two points is known for more than a decade, no efficient algorithm is yet known to find a shortest descending

dblp:conf/cccg/RoyLDM07
fatcat:3dkjvtrtijcllft7qaubpwkyka