Adaptive Hybrid Classifier for Myoelectric Pattern Recognition Against the Interferences of Outlier Motion, Muscle Fatigue, and Electrode Doffing

Qichuan Ding, Xingang Zhao, Jianda Han, Chunguang Bu, Chengdong Wu
2019 IEEE transactions on neural systems and rehabilitation engineering  
Traditional myoelectric prostheses that employ a static pattern recognition model to identify human movement intention from surface electromyography (sEMG) signals hardly adapt to the changes in the sEMG characteristics caused by interferences from daily activities, which hinders the clinical applications of such prostheses. In this paper, we focus on methods to reduce or eliminate the impacts of three types of daily interferences on myoelectric pattern recognition (MPR), i.e., outlier motion,
more » ... uscle fatigue, and electrode doffing/donning. We constructed an adaptive incremental hybrid classifier (AIHC) by combining one-class support vector data description and multi-class linear discriminant analysis in conjunction with two specific update schemes. We developed an AIHC-based MPR strategy to improve the robustness of MPR against the three interferences. Extensive experiments on hand-motion recognition were conducted to demonstrate the performance of the proposed method. Experimental results show that the AIHC has significant advantages over non-adaptive classifiers under various interferences, with improvements in the classification accuracy ranging from 7.1% to 39% ( ). The additional evaluations on data deviations demonstrate that the AIHC can accommodate large-scale changes in the sEMG characteristics, revealing the potential of the AIHC-based MPR strategy in the development of clinical myoelectric prostheses.
doi:10.1109/tnsre.2019.2911316 pmid:30998472 fatcat:nw5i2ijwofdzvj4qis3tzvrmhe