Trade-off between Transcriptome Plasticity and Genome Evolution in Cephalopods

Noa Liscovitch-Brauer, Shahar Alon, Hagit T. Porath, Boaz Elstein, Ron Unger, Tamar Ziv, Arie Admon, Erez Y. Levanon, Joshua J.C. Rosenthal, Eli Eisenberg
2017 Cell  
RNA editing, a post-transcriptional process, allows the diversification of proteomes beyond the genomic blueprint; however it is infrequently used among animals. Recent reports suggesting increased levels of RNA editing in squids thus raise the question of their nature and effects in these organisms. We here show that RNA editing is particularly common in behaviorally sophisticated coleoid cephalopods, with tens of thousands of evolutionarily conserved sites. Editing is enriched in the nervous
more » ... ystem affecting molecules pertinent for excitability and neuronal morphology. The genomic sequence flanking editing sites is highly conserved, suggesting that the process confers a selective advantage. Due to the large number of sites, the surrounding conservation greatly reduces the number of mutations and genomic polymorphisms in protein coding regions. This trade-off between genome evolution and transcriptome plasticity highlights the importance of RNA recoding as a strategy for diversifying proteins, particularly those associated with neural function.
doi:10.1016/j.cell.2017.03.025 pmid:28388405 pmcid:PMC5499236 fatcat:ok5yr2ql2fbbvlti42zw5d2jve