Mouse hepatitis virus nsp14 exoribonuclease activity is required for resistance to innate immunity [article]

James Brett Case, Yize Li, Ruth Elliott, Xiaotao Lu, Kevin W. Graepel, Nicole R. Sexton, Everett Clinton Smith, Susan R. Weiss, Mark R. Denison
2017 bioRxiv   pre-print
Coronaviruses (CoV) are positive-sense RNA viruses that infect numerous mammalian and avian species and are capable of causing severe and lethal disease in humans. CoVs encode several innate immune antagonists that interact with the host innate immune response to facilitate efficient viral replication. CoV non-structural protein 14 (nsp14) encodes 3′-to-5′ exoribonuclease activity (ExoN), which performs a proofreading function and is required for high-fidelity replication. Outside of the order
more » ... idovirales, arenaviruses are the only RNA viruses that encode an ExoN, which functions to degrade dsRNA replication intermediates. In this study, we tested the hypothesis that CoV ExoN may also function to antagonize the innate immune response. We demonstrate that viruses lacking ExoN activity [ExoN(-)] are sensitive to cellular pretreatment with interferon beta (IFN-β) in a dose-dependent manner. In addition, ExoN(-) virus replication was attenuated in wild-type bone marrow-derived macrophages (BMMs) and partially restored in interferon alpha/beta receptor deficient (IFNAR-/-) BMMs. ExoN(-) virus replication did not result in IFN-β gene expression, and in the presence of an IFN-β-mediated antiviral state, ExoN(-) viral RNA levels were not substantially reduced relative to untreated. However, ExoN(-) virus generated from IFN-β pretreated cells had reduced specific infectivity and decreased relative fitness, suggesting that ExoN(-) virus generated during an antiviral state is less viable to establish a subsequent infection. Overall, our data suggest MHV ExoN activity is required for resistance to the innate immune response and antiviral mechanisms affecting the viral RNA sequence and/or an RNA modification act on viruses lacking ExoN activity.
doi:10.1101/182196 fatcat:qd37eor7vvdwdpo5qkvxe45ft4