A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit the original URL.
The file type is application/pdf
.
Modeling electronic quantum transport with machine learning
2014
Physical Review B
We present a Machine Learning approach to solve electronic quantum transport equations of one-dimensional nanostructures. The transmission coefficients of disordered systems were computed to provide training and test datasets to the machine. The system's representation encodes energetic as well as geometrical information to characterize similarities between disordered configurations, while the Euclidean norm is used as a measure of similarity. Errors for out-of-sample predictions systematically
doi:10.1103/physrevb.89.235411
fatcat:tzzh7bn72fhqnhx5qov4vd5fqq