Comparative Evaluation of Pretrained Transfer Learning Models on Automatic Short Answer Grading [article]

Sasi Kiran Gaddipati, Deebul Nair, Paul G. Plöger
2020 arXiv   pre-print
Automatic Short Answer Grading (ASAG) is the process of grading the student answers by computational approaches given a question and the desired answer. Previous works implemented the methods of concept mapping, facet mapping, and some used the conventional word embeddings for extracting semantic features. They extracted multiple features manually to train on the corresponding datasets. We use pretrained embeddings of the transfer learning models, ELMo, BERT, GPT, and GPT-2 to assess their
more » ... iency on this task. We train with a single feature, cosine similarity, extracted from the embeddings of these models. We compare the RMSE scores and correlation measurements of the four models with previous works on Mohler dataset. Our work demonstrates that ELMo outperformed the other three models. We also, briefly describe the four transfer learning models and conclude with the possible causes of poor results of transfer learning models.
arXiv:2009.01303v1 fatcat:mqckyjsd2bhpfba34xmxg3ysbm