Beta Probabilistic Databases

Niccolo' Meneghetti, Oliver Kennedy, Wolfgang Gatterbauer
2017 Proceedings of the 2017 ACM International Conference on Management of Data - SIGMOD '17  
Tuple-independent probabilistic databases (TI-PDBs) handle uncertainty by annotating each tuple with a probability parameter; when the user submits a query, the database derives the marginal probabilities of each output-tuple, assuming input-tuples are statistically independent. While query processing in TI-PDBs has been studied extensively, limited research has been dedicated to the problems of updating or deriving the parameters from observations of query results. Addressing this problem is
more » ... e main focus of this paper. We introduce Beta Probabilistic Databases (B-PDBs), a generalization of TI-PDBs designed to support both (i) belief updating and (ii) parameter learning in a principled and scalable way. The key idea of B-PDBs is to treat each parameter as a latent, Beta-distributed random variable. We show how this simple expedient enables both belief updating and parameter learning in a principled way, without imposing any burden on regular query processing. We use this model to provide the following key contributions: (i) we show how to scalably compute the posterior densities of the parameters given new evidence; (ii) we study the complexity of performing Bayesian belief updates, devising efficient algorithms for tractable classes of queries; (iii) we propose a soft-EM algorithm for computing maximum-likelihood estimates of the parameters; (iv) we show how to embed the proposed algorithms into a standard relational engine; (v) we support our conclusions with extensive experimental results.
doi:10.1145/3035918.3064026 dblp:conf/sigmod/MeneghettiKG17 fatcat:yc6mvudslzdqdi7ijy5e5vb62u