Quantum Latin squares and unitary error bases [article]

Benjamin Musto, Jamie Vicary
2016 arXiv   pre-print
In this paper we introduce quantum Latin squares, combinatorial quantum objects which generalize classical Latin squares, and investigate their applications in quantum computer science. Our main results are on applications to unitary error bases (UEBs), basic structures in quantum information which lie at the heart of procedures such as teleportation, dense coding and error correction. We present a new method for constructing a UEB from a quantum Latin square equipped with extra data.
more » ... construction techniques for UEBs has been a major activity in quantum computation, with three primary methods proposed: shift-and-multiply, Hadamard, and algebraic. We show that our new approach simultaneously generalizes the shift-and-multiply and Hadamard methods. Furthermore, we explicitly construct a UEB using our technique which we prove cannot be obtained from any of these existing methods.
arXiv:1504.02715v2 fatcat:i4bnxp2e35f5dn67v5f2jmxjxq