Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study

Jenny Lord, Dominic McMullan, Ruth Eberhardt, Gabriele Rinck, Susan Hamilton, Elizabeth Quinlan-Jones, Elena Prigmore, Rebecca Keelagher, Sunayna Best, Georgina Carey, Mark Kilby, Lyn Chitty (+4 others)
2019
Fetal structural anomalies, which are detected by ultrasonography, have a range of genetic causes, including chromosomal aneuploidy, copy number variations (CNVs; which are detectable by chromosomal microarrays), and pathogenic sequence variants in developmental genes. Testing for aneuploidy and CNVs is routine during the investigation of fetal structural anomalies, but there is little information on the clinical usefulness of genome-wide next-generation sequencing in the prenatal setting. We
more » ... natal setting. We therefore aimed to evaluate the proportion of fetuses with structural abnormalities that had identifiable variants in genes associated with developmental disorders when assessed with whole-exome sequencing (WES). Methods: In this prospective cohort study, two groups in Birmingham and London recruited patients from 34 fetal medicine units in England and Scotland. We used whole-exome sequencing (WES) to evaluate the presence of genetic variants in developmental disorder genes (diagnostic genetic variants) in a cohort of fetuses with structural anomalies and samples from their parents, after exclusion of aneuploidy and large CNVs. Women were eligible for inclusion if they were undergoing invasive testing for identified nuchal translucency or structural anomalies in their fetus, as detected by ultrasound after 11 weeks of gestation. The partners of these women also had to consent to participate. Sequencing results were interpreted with a targeted virtual gene panel for developmental disorders that comprised 1628 genes. Genetic results related to fetal structural anomaly phenotypes were then validated and reported postnatally. The primary endpoint, which was assessed in all fetuses, was the detection of diagnostic genetic variants considered to have caused the fetal developmental anomaly. Findings: The cohort was recruited between Oct 22, 2014, and June 29, 2017, and clinical data were collected until March 31, 2018. After exclusion of fetuses with aneuploidy and CNVs, 610 fetuses with structural anomalies and 1202 ma [...]
doi:10.17863/cam.35171 fatcat:umjzomre6rfuzmyh3iyjualzk4