Effects of N-acetyltransferase 2 (NAT2), CYP2E1 and Glutathione-S-transferase (GST) genotypes on the serum concentrations of isoniazid and metabolites in tuberculosis patients

Katsumi Fukino, Yuka Sasaki, Shigekazu Hirai, Takayuki Nakamura, Masayo Hashimoto, Fumio Yamagishi, Koichi Ueno
2008 Journal of Toxicological Sciences  
For the purpose of a side-effect monitoring of isoniazid (INH), we investigated the relationship between the genotypes of drug-metabolizing enzymes involved in INH metabolism and the serum concentrations of INH and its metabolites in 129 tuberculosis patients hospitalizing in the National Hospital Organization Chiba-East Hospital. Genotype distributions of N-acetyltransferase 2 (NAT2), CYP2E1*5B, CYP2E1*6, Glutathione-S-transferase (GST) M1 and GST T1 were similar to those already reported in
more » ... panese populations. Acetylating pathway of INH to acetyl isoniazid (AcINH) tended to shift to the hydrolytic pathway generating hydrazine (Hz) with the increase of mutant alleles in NAT2 gene. tration of rifampicin (RFP) than in which RFP was not detected. The effect of CYP2E1 gene polymorphisms on the serum concentration of Hz was rarely observed, while that of GST gene polymorphism was observed in intermediate acetylators of NAT2. Hz tended to accumulate in patients with GST M1 null genotype. Therefore, it is conceivable that the risk factors of Hz accumulation are as follows: NAT2 slow acetylator phenotype, high concentration of serum RFP, and GST M1 null genotype. In these cases, we think it's necessary to pay attention to the development of hepatic disorder caused by Hz.
doi:10.2131/jts.33.187 pmid:18544910 fatcat:bhxuh2zljfh3nmwckxjcshfhau