Algorithms for clique-independent sets on subclasses of circular-arc graphs

Guillermo Durán, Min Chih Lin, Sergio Mera, Jayme Luiz Szwarcfiter
<span title="">2006</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="" style="color: black;">Discrete Applied Mathematics</a> </i> &nbsp;
A circular-arc graph is the intersection graph of arcs on a circle. A Helly circular-arc graph is a circular-arc graph admitting a model whose arcs satisfy the Helly property. A clique-independent set of a graph is a set of pairwise disjoint cliques of the graph. It is NP-hard to compute the maximum cardinality of a clique-independent set for a general graph. In the present paper, we propose polynomial time algorithms for finding the maximum cardinality and weight of a clique-independent set of
more &raquo; ... a 3K 2 -free CA graph. Also, we apply the algorithms to the special case of an HCA graph. The complexity of the proposed algorithm for the cardinality problem in HCA graphs is O(n). This represents an improvement over the existing algorithm by Guruswami and Pandu Rangan, whose complexity is O(n 2 ). These algorithms suppose that an HCA model of the graph is given.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.1016/j.dam.2006.03.022</a> <a target="_blank" rel="external noopener" href="">fatcat:eab6d2a6rnf7dibcduc4dbqqni</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> </button> </a>