Scalable Sparse Bayesian Network Learning for Spatial Applications

Thomas Liebig, Christine Körner, Michael May
<span title="">2008</span> <i title="IEEE"> <a target="_blank" rel="noopener" href="" style="color: black;">2008 IEEE International Conference on Data Mining Workshops</a> </i> &nbsp;
Traffic routes through a street network contain patterns and are no random walks. Such patterns exist for instance along streets or between neighbouring street segments. The extraction of these patterns is a challenging task due to the enormous size of city street networks, the large number of required training data and the unknown distribution of the latter. We apply Bayesian Networks to model the correlations between the locations in space-time trajectories and address the following tasks. We
more &raquo; ... introduce and examine a Bayesian Network Learning algorithm enabling us to handle the complexity and performance requirements of the spatial context. Furthermore, we apply our method to German cities, evaluate the accuracy and analyse the runtime behaviour for different parameter settings.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.1109/icdmw.2008.124</a> <a target="_blank" rel="external noopener" href="">dblp:conf/icdm/LiebigKM08</a> <a target="_blank" rel="external noopener" href="">fatcat:w3ocuprgprhfninttoyxfugqv4</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> </button> </a>