Flexible Players within the Sheaths: The Intrinsically Disordered Proteins of Myelin in Health and Disease [post]

Arne Raasakka, Petri Kursula
2020 unpublished
Myelin ensheathes selected axonal segments within the nervous system, resulting primarily in nerve impulse acceleration, as well as mechanical and trophic support for neurons. In the central and peripheral nervous systems, various proteins that contribute to the formation and stability of myelin are present, which also harbour pathophysiological roles in myelin disease. Many myelin proteins share common attributes, including small size, high hydrophobicity, multifunctionality, longevity, and
more » ... , longevity, and intrinsic disorder. With recent advances in protein biophysical characterization and bioinformatics, it has become evident that intrinsically disordered proteins (IDPs) are abundant in myelin, and their flexible nature enables multifunctionality. Here, we review known myelin IDPs, their conservation, molecular characteristics and functions, and their disease relevance, along with open questions and speculations. We place emphasis on classifying the molecular details of IDPs in myelin and correlate these with their various functions, including susceptibility to post-translational modifications, function in protein-protein and protein-membrane interactions, as well as their role as extended entropic chains. We discuss how myelin pathology can relate to IDPs and which molecular factors are potentially involved.
doi:10.20944/preprints202001.0376.v1 fatcat:3wxc66ikdfgl7jq46qn7zwb4xa