A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Inference Acceleration with Adaptive Distributed DNN Partition over Dynamic Video Stream
2022
Algorithms
Deep neural network-based computer vision applications have exploded and are widely used in intelligent services for IoT devices. Due to the computationally intensive nature of DNNs, the deployment and execution of intelligent applications in smart scenarios face the challenge of limited device resources. Existing job scheduling strategies are single-focused and have limited support for large-scale end-device scenarios. In this paper, we present ADDP, an adaptive distributed DNN partition
doi:10.3390/a15070244
fatcat:5cqznmvfbrcmjciy3fgj7nslvm