Two-Coloring the Edges of a Cubic Graph Such That Each Monochromatic Component Is a Path of Length at Most 5

Carsten Thomassen
<span title="">1999</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="" style="color: black;">Journal of combinatorial theory. Series B (Print)</a> </i> &nbsp;
We prove the conjecture made by Bermond, Fouquet, Habib, and Pe roche in 1984 that every cubic graph has an edge-coloring as described in the title. The number 5 cannot be replaced by 4.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.1006/jctb.1998.1868</a> <a target="_blank" rel="external noopener" href="">fatcat:s5u3ggdzyrg6jbudvlughbix7e</a> </span>
<a target="_blank" rel="noopener" href="" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / </button> </a>