Channel backscattering characteristics of uniaxially strained nanoscale CMOSFETs

Hong-Nien Lin, Hung-Wei Chen, Chih-Hsin Ko, Chung-Hu Ge, Horng-Chih Lin, Tiao-Yuan Huang, Wen-Chin Lee
2005 IEEE Electron Device Letters  
Channel backscattering characteristics of uniaxially strained nanoscale CMOSFETs are reported for the first time. Channel backscattering ratio increases and decreases under uniaxial tensile and compressive strain, respectively. It is found that in sub-100-nm devices, strain-induced modulation of carrier mean-free path for backscattering and reduction in layer thickness are responsible for the different behaviors of backscattering ratio. Nevertheless, the source-side injection velocity improves
more » ... velocity improves irrespective of the strain polarities. The impact of channel backscattering ratio on drive current is also analyzed in terms of ballistic efficiency and injection velocity.
doi:10.1109/led.2005.853640 fatcat:4j2jegxuyrgglagixkqamfhnvm