A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is `application/pdf`

.

##
###
Radial limits of bounded nonparametric prescribed mean curvature surfaces

2016
*
Pacific Journal of Mathematics
*

Consider a solution f∈ C^2(Ω) of a prescribed mean curvature equation div(∇ f/√(1+|∇ f|^2))=2H(x,f) in Ω, where Ω⊂^2 is a domain whose boundary has a corner at O=(0,0)∈∂Ω. If _x∈Ω |f(x)| and _x∈Ω |H(x,f(x))| are both finite and Ω has a reentrant corner at O, then the radial limits of f at O, Rf(θ) _r↓ 0 f(rcos(θ),rsin(θ)), are shown to exist and to have a specific type of behavior, independent of the boundary behavior of f on ∂Ω. If _x∈Ω |f(x)| and _x∈Ω |H(x,f(x))| are both finite and the trace

doi:10.2140/pjm.2016.283.341
fatcat:xemxc2olljdvxnfjblmlnlrruy