An enzymatic approach reverses nicotine dependence, decreases compulsive-like intake, and prevents relapse

Marsida Kallupi, Song Xue, Bin Zhou, Kim D. Janda, Olivier George
2018 Science Advances  
Tobacco use disorder is the leading cause of disease and preventable death worldwide, but current medications that are based on pharmacodynamics have low efficacy. Novel pharmacokinetic approaches to prevent nicotine from reaching the brain have been tested using vaccines, but these efforts have failed because antibody affinity and concentration are not sufficient to completely prevent nicotine from reaching the brain. We provide preclinical evidence of the efficacy of an enzymatic approach to
more » ... ymatic approach to reverse nicotine dependence, reduce compulsive-like nicotine intake, and prevent relapse in rats with a history of nicotine dependence. Chronic administration of NicA2-J1, an engineered nicotine-degrading enzyme that was originally isolated from Pseudomonas putida S16, completely prevented nicotine from reaching the brain and reversed somatic signs of withdrawal, hyperalgesia, and irritability-like behavior in nicotine-dependent rats with a history of escalation of nicotine self-administration. NicA2-J1 also decreased compulsive-like nicotine intake, reflected by responding despite the adverse consequences of contingent footshocks, and prevented nicotine- and stress (yohimbine)–induced relapse. These results demonstrate the efficacy of enzymatic therapy in treating nicotine addiction in advanced animal models and provide a strong foundation for the development of biological therapies for smoking cessation in humans.
doi:10.1126/sciadv.aat4751 fatcat:ykcno55kx5fyvetmfclknmkibi