Formation Mechanism, Structure Model and Electrochemical Performance of an In situ Cross Linking Hybrid Polymer Electrolyte Membrane

LIANG Gui-Jie, 湖北文理学院材料科学与工程研究中心, 湖北襄阳 441053;,Research Center for Materials Science & Engineering, Hubei University of Arts and Science, Xiangyang 441053, Hubei Province, P. R. China;, ZHONG Zhi-Cheng, XU Jie, XU Wei-Lin, CHEN Mei-Hua, ZHANG Zeng-Chang, LI Wen-Lian, 西安交通大学, 金属材料强度国家重点实验室, 西安 710049;,State Key Laboratory for Mechanical Behavior of Materials, Xi'an JiaoTong University, Xi'an 710049, P. R. China;, 武汉纺织大学, 新型纺织材料绿色加工及其功能化教育部重点实验室, 武汉 430073,Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, P. R. China
2012 Wuli huaxue xuebao  
摘要: 合成含有 Ti(VI)杂化中心的交联(柠檬酸钛络合体-聚乙二醇)聚酯网络作为基体, 水解生成的 Nano-TiO2 粒子为填料, LiI/I2为导电介质, 通过原位聚合复合法制备了 Nano-TiO2/(柠檬酸钛络合体-聚乙二醇)/LiI/I2交联杂 化型聚合物电解质膜. 采用局域密度近似(LDA)法、 Raman 光谱、 傅里叶变换红外(FTIR)光谱、 透射电子显微镜 (TEM)和能量散射 X 射线分析(EDXA)探讨了交联杂化聚合物基体的形成机理, 并建立了其相应的结构模型. 在 此基础之上, 研究了四异丙氧基钛(Ti(iOPr)4)的含量对 Nano-TiO2/(柠檬酸钛络合体-聚乙二醇)/LiI/I2电解质膜的 结构及电化学性能的影响. 研究表明: 当 Ti(iOPr)4含量高于 12% (w)时, Nano-TiO2粒子和 Ti(VI)杂化中心的共 同作用不仅有效提高了电解质膜的离子电导率(σ), 而且显著改善了电解质膜与电极间的界面稳定性; Ti(iOPr)4 含量为 48% (w)时, 电解质膜的室温离子电导率达到最大值 9.72×10 -5 S·cm -1
more » ... 9.72×10 -5 S·cm -1 , 电解质膜的界面电阻于 6 d 后趋 于稳定. Abstract: A Nano-TiO2/poly(citric acid titanium complex-polyethylene glycol)/LiI/I2 crosslinked hybrid polymer electrolyte membrane has been prepared via in-situ polymerization and compositing. Specifically, the method used the synthesized crosslinked network of poly(citric acid titanium complex-polyethylene glycol) containing the Ti(VI) hybrid center as a substrate, the hydrolyzed Nano-TiO2 as fillers and LiI/I2 as conductive ionics. The formation mechanism of the crosslinked hybrid polymer matrix is discussed. A structural model was established with a local density approximation (LDA) method. The influence of Ti(iOPr)4 content on the structure and electrochemical performance of the electrolyte membrane were investigated with Raman spectra, Fourier transform infrared spectra (FTIR), transmission electron microscopy (TEM), and an energy dispersive X-ray analysis (EDXA) technique. It was found that when the Ti(iOPr)4 content 2057 Acta Phys. •Chim. Sin. 2012 Vol.28 was higher than 12% (w), the combined action of Nano-TiO2 particles and the Ti(VI) hybrid center improved not only the room-temperature ionic conductivity (σ), but also the interfacial stability. At 48% (w) Ti(iOPr)4 content, the value of σ reached a maximum of 9.72×10 -5 S·cm -1 and the interface resistance became stable after 6 d.
doi:10.3866/pku.whxb201205251 fatcat:yr5q7gsltbd3fk4tjhalby43z4