An Online Spectral Learning Algorithm for Partially Observable Nonlinear Dynamical Systems

Byron Boots, Geoffrey Gordon
2011 PROCEEDINGS OF THE THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE TWENTY-EIGHTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE  
Recently, a number of researchers have proposed spectral algorithms for learning models of dynamical systems — for example, Hidden Markov Models (HMMs), Partially Observable Markov Decision Processes (POMDPs), and Transformed Predictive State Representations (TPSRs). These algorithms are attractive since they are statistically consistent and not subject to local optima. However, they are batch methods: they need to store their entire training data set in memory at once and operate on it as a
more » ... ge matrix, and so they cannot scale to extremely large data sets (either many examples or many features per example). In turn, this restriction limits their ability to learn accurate models of complex systems. To overcome these limitations, we propose a new online spectral algorithm, which uses tricks such as incremental Singular Value Decomposition (SVD) and random projections to scale to much larger data sets and more complex systems than previous methods. We demonstrate the new method on an inertial measurement prediction task and a high-bandwidth video mapping task and we illustrate desirable behaviors such as "closing the loop," where the latent state representation changes suddenly as the learner recognizes that it has returned to a previously known place.
doi:10.1609/aaai.v25i1.7924 fatcat:ruhb7a2wuzbyrohq4hdnttr55i