Polymatroid Prophet Inequalities [article]

Paul Duetting, Robert Kleinberg
2013 arXiv   pre-print
Consider a gambler and a prophet who observe a sequence of independent, non-negative numbers. The gambler sees the numbers one-by-one whereas the prophet sees the entire sequence at once. The goal of both is to decide on fractions of each number they want to keep so as to maximize the weighted fractional sum of the numbers chosen. The classic result of Krengel and Sucheston (1977-78) asserts that if both the gambler and the prophet can pick one number, then the gambler can do at least half as
more » ... ll as the prophet. Recently, Kleinberg and Weinberg (2012) have generalized this result to settings where the numbers that can be chosen are subject to a matroid constraint. In this note we go one step further and show that the bound carries over to settings where the fractions that can be chosen are subject to a polymatroid constraint. This bound is tight as it is already tight for the simple setting where the gambler and the prophet can pick only one number. An interesting application of our result is in mechanism design, where it leads to improved results for various problems.
arXiv:1307.5299v1 fatcat:ilmx6de6afduleu3mpmjkrbgsi