A framework of stochastic power management using hidden Markov model

Ying Tan, Qinru Qiu
2008 Proceedings of the conference on Design, automation and test in Europe - DATE '08  
The effectiveness of stochastic power management relies on the accurate system and workload model and effective policy optimization. Workload modeling is a machine learning procedure that finds the intrinsic pattern of the incoming tasks based on the observed workload attributes. Markov Decision Process (MDP) based model has been widely adopted for stochastic power management because it delivers provable optimal policy. Given a sequence of observed workload attributes, the hidden Markov model
more » ... MM) of the workload is trained. If the observed workload attributes and states in the workload model do not have one-to-one correspondence, the MDP becomes a Partially Observable Markov Decision Process (POMDP). This paper presents a framework of modeling and optimization for stochastic power management using HMM and POMDP. The proposed technique discovers the HMM of the workload by maximizing the likelihood of the observed attribute sequence. The POMDP optimization is formulated and solved as a quadraticly constrained linear programming (QCLP). Compared with traditional optimization technique, which is based on value iteration, the QCLP based optimization provides superior policy by enabling stochastic control.
doi:10.1145/1403375.1403402 fatcat:ebgup6x6yjdrbmzsvv6be2r2ta