Low Resolution Information Also Matters: Learning Multi-Resolution Representations for Person Re-Identification [article]

Guoqing Zhang, Yuhao Chen, Weisi Lin, Arun Chandran, Xuan Jing
2021 arXiv   pre-print
As a prevailing task in video surveillance and forensics field, person re-identification (re-ID) aims to match person images captured from non-overlapped cameras. In unconstrained scenarios, person images often suffer from the resolution mismatch problem, i.e., Cross-Resolution Person Re-ID. To overcome this problem, most existing methods restore low resolution (LR) images to high resolution (HR) by super-resolution (SR). However, they only focus on the HR feature extraction and ignore the
more » ... information from original LR images. In this work, we explore the influence of resolutions on feature extraction and develop a novel method for cross-resolution person re-ID called Multi-Resolution Representations Joint Learning (MRJL). Our method consists of a Resolution Reconstruction Network (RRN) and a Dual Feature Fusion Network (DFFN). The RRN uses an input image to construct a HR version and a LR version with an encoder and two decoders, while the DFFN adopts a dual-branch structure to generate person representations from multi-resolution images. Comprehensive experiments on five benchmarks verify the superiority of the proposed MRJL over the relevent state-of-the-art methods.
arXiv:2105.12684v1 fatcat:wdesaeghrff53mqw7q43ttkjsq