Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning

Mohammad Sadegh Norouzzadeh, Anh Nguyen, Margaret Kosmala, Alexandra Swanson, Meredith S. Palmer, Craig Packer, Jeff Clune
2018 Proceedings of the National Academy of Sciences of the United States of America  
Having accurate, detailed, and up-to-date information about the location and behavior of animals in the wild would improve our ability to study and conserve ecosystems. We investigate the ability to automatically, accurately, and inexpensively collect such data, which could help catalyze the transformation of many fields of ecology, wildlife biology, zoology, conservation biology, and animal behavior into "big data" sciences. Motion-sensor "camera traps" enable collecting wildlife pictures
more » ... ensively, unobtrusively, and frequently. However, extracting information from these pictures remains an expensive, time-consuming, manual task. We demonstrate that such information can be automatically extracted by deep learning, a cutting-edge type of artificial intelligence. We train deep convolutional neural networks to identify, count, and describe the behaviors of 48 species in the 3.2 millionimage Snapshot Serengeti dataset. Our deep neural networks automatically identify animals with >93.8% accuracy, and we expect that number to improve rapidly in years to come. More importantly, if our system classifies only images it is confident about, our system can automate animal identification for 99.3% of the data while still performing at the same 96.6% accuracy as that of crowdsourced teams of human volunteers, saving >8.4 y (i.e., >17,000 h at 40 h/wk) of human labeling effort on this 3.2 million-image dataset. Those efficiency gains highlight the importance of using deep neural networks to automate data extraction from camera-trap images, reducing a roadblock for this widely used technology. Our results suggest that deep learning could enable the inexpensive, unobtrusive, high-volume, and even realtime collection of a wealth of information about vast numbers of animals in the wild. deep learning | deep neural networks | artificial intelligence | camera-trap images | wildlife ecology Significance Motion-sensor cameras in natural habitats offer the opportunity to inexpensively and unobtrusively gather vast amounts of data on animals in the wild. A key obstacle to harnessing their potential is the great cost of having humans analyze each image. Here, we demonstrate that a cuttingedge type of artificial intelligence called deep neural networks can automatically extract such invaluable information. For example, we show deep learning can automate animal identification for 99.3% of the 3.2 million-image Snapshot Serengeti dataset while performing at the same 96.6% accuracy of crowdsourced teams of human volunteers. Automatically, accurately, and inexpensively collecting such data could help catalyze the transformation of many fields of ecology, wildlife biology, zoology, conservation biology, and animal behavior into "big data" sciences.
doi:10.1073/pnas.1719367115 pmid:29871948 pmcid:PMC6016780 fatcat:uaflbasnznbzfescvn2vw4bnl4