AnRPackage for Probabilistic Latent Feature Analysis of Two-Way Two-Mode Frequencies

Michel Meulders
2013 Journal of Statistical Software  
A common strategy for the analysis of object-attribute associations is to derive a lowdimensional spatial representation of objects and attributes which involves a compensatory model (e.g., principal components analysis) to explain the strength of object-attribute associations. As an alternative, probabilistic latent feature models assume that objects and attributes can be represented as a set of binary latent features and that the strength of object-attribute associations can be explained as a
more » ... n be explained as a non-compensatory (e.g., disjunctive or conjunctive) mapping of latent features. In this paper, we describe the R package plfm which comprises functions for conducting both classical and Bayesian probabilistic latent feature analysis with disjunctive or a conjunctive mapping rules. Print and summary functions are included to summarize results on parameter estimation, model selection and the goodness of fit of the models. As an example the functions of plfm are used to analyze product-attribute data on the perception of car models, and situation-behavior associations on the situational determinants of anger-related behavior.
doi:10.18637/jss.v054.i14 fatcat:wlipo2pdxvecdhzchlbzzxs7ba